Search Results
You are looking at 21 - 30 of 34 items for :
- Author or Editor: M. E. Brooks x
- Article x
- Refine by Access: All Content x
In May 2003 there was a very destructive extended outbreak of tornadoes across the central and eastern United States. More than a dozen tornadoes struck each day from 3 May to 11 May 2003. This outbreak caused 41 fatalities, 642 injuries, and approximately $829 million dollars of property damage. The outbreak set a record for most tornadoes ever reported in a week (334 between 4–10 May), and strong tornadoes (F2 or greater) occurred in an unbroken sequence of nine straight days. Fortunately, despite this being one of the largest extended outbreaks of tornadoes on record, it did not cause as many fatalities as in the few comparable past outbreaks, due in large measure to the warning efforts of National Weather Service, television, and private-company forecasters and the smaller number of violent (F4–F5) tornadoes. This event was also relatively predictable; the onset of the outbreak was forecast skillfully many days in advance.
An unusually persistent upper-level trough in the intermountain west and sustained low-level southerly winds through the southern Great Plains produced the extended period of tornado-favorable conditions. Three other extended outbreaks in the past 88 years were statistically comparable to this outbreak, and two short-duration events (Palm Sunday 1965 and the 1974 Superoutbreak) were comparable in the overall number of strong tornadoes. An analysis of tornado statistics and environmental conditions indicates that extended outbreaks of this character occur roughly every 10 to 100 years.
In May 2003 there was a very destructive extended outbreak of tornadoes across the central and eastern United States. More than a dozen tornadoes struck each day from 3 May to 11 May 2003. This outbreak caused 41 fatalities, 642 injuries, and approximately $829 million dollars of property damage. The outbreak set a record for most tornadoes ever reported in a week (334 between 4–10 May), and strong tornadoes (F2 or greater) occurred in an unbroken sequence of nine straight days. Fortunately, despite this being one of the largest extended outbreaks of tornadoes on record, it did not cause as many fatalities as in the few comparable past outbreaks, due in large measure to the warning efforts of National Weather Service, television, and private-company forecasters and the smaller number of violent (F4–F5) tornadoes. This event was also relatively predictable; the onset of the outbreak was forecast skillfully many days in advance.
An unusually persistent upper-level trough in the intermountain west and sustained low-level southerly winds through the southern Great Plains produced the extended period of tornado-favorable conditions. Three other extended outbreaks in the past 88 years were statistically comparable to this outbreak, and two short-duration events (Palm Sunday 1965 and the 1974 Superoutbreak) were comparable in the overall number of strong tornadoes. An analysis of tornado statistics and environmental conditions indicates that extended outbreaks of this character occur roughly every 10 to 100 years.
Abstract
Concurrent wavefield and turbulent flux measurements acquired during the Southern Ocean (SO) Gas Exchange (GasEx) and the High Wind Speed Gas Exchange Study (HiWinGS) projects permit evaluation of the dependence of the whitecap coverage W on wind speed, wave age, wave steepness, mean square slope, and wind-wave and breaking Reynolds numbers. The W was determined from over 600 high-frequency visible imagery recordings of 20 min each. Wave statistics were computed from in situ and remotely sensed data as well as from a WAVEWATCH III hindcast. The first shipborne estimates of W under sustained 10-m neutral wind speeds U 10N of 25 m s−1 were obtained during HiWinGS. These measurements suggest that W levels off at high wind speed, not exceeding 10% when averaged over 20 min. Combining wind speed and wave height in the form of the wind-wave Reynolds number resulted in closely agreeing models for both datasets, individually and combined. These are also in good agreement with two previous studies. When expressing W in terms of wavefield statistics only or wave age, larger scatter is observed and/or there is little agreement between SO GasEx, HiWinGS, and previously published data. The wind speed–only parameterizations deduced from the SO GasEx and HiWinGS datasets agree closely and capture more of the observed W variability than Reynolds number parameterizations. However, these wind speed–only models do not agree as well with previous studies than the wind-wave Reynolds numbers.
Abstract
Concurrent wavefield and turbulent flux measurements acquired during the Southern Ocean (SO) Gas Exchange (GasEx) and the High Wind Speed Gas Exchange Study (HiWinGS) projects permit evaluation of the dependence of the whitecap coverage W on wind speed, wave age, wave steepness, mean square slope, and wind-wave and breaking Reynolds numbers. The W was determined from over 600 high-frequency visible imagery recordings of 20 min each. Wave statistics were computed from in situ and remotely sensed data as well as from a WAVEWATCH III hindcast. The first shipborne estimates of W under sustained 10-m neutral wind speeds U 10N of 25 m s−1 were obtained during HiWinGS. These measurements suggest that W levels off at high wind speed, not exceeding 10% when averaged over 20 min. Combining wind speed and wave height in the form of the wind-wave Reynolds number resulted in closely agreeing models for both datasets, individually and combined. These are also in good agreement with two previous studies. When expressing W in terms of wavefield statistics only or wave age, larger scatter is observed and/or there is little agreement between SO GasEx, HiWinGS, and previously published data. The wind speed–only parameterizations deduced from the SO GasEx and HiWinGS datasets agree closely and capture more of the observed W variability than Reynolds number parameterizations. However, these wind speed–only models do not agree as well with previous studies than the wind-wave Reynolds numbers.
Abstract
The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces near the ice edge, offering insight into the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmosphere cooled abruptly, leading to a surface heat loss. During melt season, strong surface inversions persisted over the ice, while elevated inversions were more frequent over open water. These differences disappeared during autumn freeze-up, when elevated inversions persisted over both ice-free and ice-covered conditions. These results are in contrast to previous studies that found a well-mixed boundary layer persisting in summer and an increased frequency of surface-based inversions in autumn, suggesting that knowledge derived from measurements taken within the pan-Arctic area and on the central ice pack does not necessarily apply closer to the ice edge. This study offers an insight into the atmospheric processes that occur during a crucial period of the year; understanding and accurately modeling these processes is essential for the improvement of ice-extent predictions and future Arctic climate projections.
Abstract
The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces near the ice edge, offering insight into the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmosphere cooled abruptly, leading to a surface heat loss. During melt season, strong surface inversions persisted over the ice, while elevated inversions were more frequent over open water. These differences disappeared during autumn freeze-up, when elevated inversions persisted over both ice-free and ice-covered conditions. These results are in contrast to previous studies that found a well-mixed boundary layer persisting in summer and an increased frequency of surface-based inversions in autumn, suggesting that knowledge derived from measurements taken within the pan-Arctic area and on the central ice pack does not necessarily apply closer to the ice edge. This study offers an insight into the atmospheric processes that occur during a crucial period of the year; understanding and accurately modeling these processes is essential for the improvement of ice-extent predictions and future Arctic climate projections.
Abstract
The European Severe Storms Laboratory (ESSL) was founded in 2006 to advance the science and forecasting of severe convective storms in Europe. ESSL was a grassroots effort of individual scientists from various European countries. The purpose of this article is to describe the 10-yr history of ESSL and present a sampling of its successful activities. Specifically, ESSL developed and manages the only multinational database of severe weather reports in Europe: the European Severe Weather Database (ESWD). Despite efforts to eliminate biases, the ESWD still suffers from spatial inhomogeneities in data collection, which motivates ESSL’s research into modeling climatologies by combining ESWD data with reanalysis data. ESSL also established its ESSL Testbed to evaluate developmental forecast products and to provide training to forecasters. The testbed is organized in close collaboration with several of Europe’s national weather services. In addition, ESSL serves a central role among the European scientific and forecast communities for convective storms, specifically through its training activities and the series of European Conferences on Severe Storms. Finally, ESSL conducts wind and tornado damage assessments, highlighted by its recent survey of a violent tornado in northern Italy.
Abstract
The European Severe Storms Laboratory (ESSL) was founded in 2006 to advance the science and forecasting of severe convective storms in Europe. ESSL was a grassroots effort of individual scientists from various European countries. The purpose of this article is to describe the 10-yr history of ESSL and present a sampling of its successful activities. Specifically, ESSL developed and manages the only multinational database of severe weather reports in Europe: the European Severe Weather Database (ESWD). Despite efforts to eliminate biases, the ESWD still suffers from spatial inhomogeneities in data collection, which motivates ESSL’s research into modeling climatologies by combining ESWD data with reanalysis data. ESSL also established its ESSL Testbed to evaluate developmental forecast products and to provide training to forecasters. The testbed is organized in close collaboration with several of Europe’s national weather services. In addition, ESSL serves a central role among the European scientific and forecast communities for convective storms, specifically through its training activities and the series of European Conferences on Severe Storms. Finally, ESSL conducts wind and tornado damage assessments, highlighted by its recent survey of a violent tornado in northern Italy.
Abstract
The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway.
Abstract
The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway.
Cloudnet
Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations
The Cloudnet project aims to provide a systematic evaluation of clouds in forecast and climate models by comparing the model output with continuous ground-based observations of the vertical profiles of cloud properties. In the models, the properties of clouds are simplified and expressed in terms of the fraction of the model grid box, which is filled with cloud, together with the liquid and ice water content of the clouds. These models must get the clouds right if they are to correctly represent both their radiative properties and their key role in the production of precipitation, but there are few observations of the vertical profiles of the cloud properties that show whether or not they are successful. Cloud profiles derived from cloud radars, ceilometers, and dual-frequency microwave radiometers operated at three sites in France, Netherlands, and the United Kingdom for several years have been compared with the clouds in seven European models. The advantage of this continuous appraisal is that the feedback on how new versions of models are performing is provided in quasi-real time, as opposed to the much longer time scale needed for in-depth analysis of complex field studies. Here, two occasions are identified when the introduction of new versions of the ECMWF and Météo-France models leads to an immediate improvement in the representation of the clouds and also provides statistics on the performance of the seven models. The Cloudnet analysis scheme is currently being expanded to include sites outside Europe and further operational forecasting and climate models.
The Cloudnet project aims to provide a systematic evaluation of clouds in forecast and climate models by comparing the model output with continuous ground-based observations of the vertical profiles of cloud properties. In the models, the properties of clouds are simplified and expressed in terms of the fraction of the model grid box, which is filled with cloud, together with the liquid and ice water content of the clouds. These models must get the clouds right if they are to correctly represent both their radiative properties and their key role in the production of precipitation, but there are few observations of the vertical profiles of the cloud properties that show whether or not they are successful. Cloud profiles derived from cloud radars, ceilometers, and dual-frequency microwave radiometers operated at three sites in France, Netherlands, and the United Kingdom for several years have been compared with the clouds in seven European models. The advantage of this continuous appraisal is that the feedback on how new versions of models are performing is provided in quasi-real time, as opposed to the much longer time scale needed for in-depth analysis of complex field studies. Here, two occasions are identified when the introduction of new versions of the ECMWF and Météo-France models leads to an immediate improvement in the representation of the clouds and also provides statistics on the performance of the seven models. The Cloudnet analysis scheme is currently being expanded to include sites outside Europe and further operational forecasting and climate models.
This scientific assessment examines changes in three climate extremes—extratropical storms, winds, and waves—with an emphasis on U.S. coastal regions during the cold season. There is moderate evidence of an increase in both extratropical storm frequency and intensity during the cold season in the Northern Hemisphere since 1950, with suggestive evidence of geographic shifts resulting in slight upward trends in offshore/coastal regions. There is also suggestive evidence of an increase in extreme winds (at least annually) over parts of the ocean since the early to mid-1980s, but the evidence over the U.S. land surface is inconclusive. Finally, there is moderate evidence of an increase in extreme waves in winter along the Pacific coast since the 1950s, but along other U.S. shorelines any tendencies are of modest magnitude compared with historical variability. The data for extratropical cyclones are considered to be of relatively high quality for trend detection, whereas the data for extreme winds and waves are judged to be of intermediate quality. In terms of physical causes leading to multidecadal changes, the level of understanding for both extratropical storms and extreme winds is considered to be relatively low, while that for extreme waves is judged to be intermediate. Since the ability to measure these changes with some confidence is relatively recent, understanding is expected to improve in the future for a variety of reasons, including increased periods of record and the development of “climate reanalysis” projects.
This scientific assessment examines changes in three climate extremes—extratropical storms, winds, and waves—with an emphasis on U.S. coastal regions during the cold season. There is moderate evidence of an increase in both extratropical storm frequency and intensity during the cold season in the Northern Hemisphere since 1950, with suggestive evidence of geographic shifts resulting in slight upward trends in offshore/coastal regions. There is also suggestive evidence of an increase in extreme winds (at least annually) over parts of the ocean since the early to mid-1980s, but the evidence over the U.S. land surface is inconclusive. Finally, there is moderate evidence of an increase in extreme waves in winter along the Pacific coast since the 1950s, but along other U.S. shorelines any tendencies are of modest magnitude compared with historical variability. The data for extratropical cyclones are considered to be of relatively high quality for trend detection, whereas the data for extreme winds and waves are judged to be of intermediate quality. In terms of physical causes leading to multidecadal changes, the level of understanding for both extratropical storms and extreme winds is considered to be relatively low, while that for extreme waves is judged to be intermediate. Since the ability to measure these changes with some confidence is relatively recent, understanding is expected to improve in the future for a variety of reasons, including increased periods of record and the development of “climate reanalysis” projects.
Abstract
A case study of the effects of ship emissions on the microphysical, radiative, and chemical properties of polluted marine boundary layer clouds is presented. Two ship tracks are discussed in detail. In situ measurements of cloud drop size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside-cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to remotely sensed measurements of cloud radiative properties.
The authors examine the processes behind ship track formation in a polluted marine boundary layer as an example of the effects of anthropogenic particulate pollution on the albedo of marine stratiform clouds.
Abstract
A case study of the effects of ship emissions on the microphysical, radiative, and chemical properties of polluted marine boundary layer clouds is presented. Two ship tracks are discussed in detail. In situ measurements of cloud drop size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside-cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to remotely sensed measurements of cloud radiative properties.
The authors examine the processes behind ship track formation in a polluted marine boundary layer as an example of the effects of anthropogenic particulate pollution on the albedo of marine stratiform clouds.
Abstract
The effects of anthropogenic particulate emissions from ships on the radiative, microphysical, and chemical properties of moderately polluted marine stratiform clouds are examined. A case study of two ships in the same air mass is presented where one of the vessels caused a discernible ship track while the other did not. In situ measurements of cloud droplet size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to measurements of cloud radiative properties. The differences between the aerosol in the two ship plumes are discussed;these indicate that combustion-derived particles in the size range of about 0.03–0.3-μm radius were those that caused the microphysical changes in the clouds that were responsible for the ship track.
The authors examine the processes behind ship track formation in a moderately polluted marine boundary layer as an example of the effects that anthropogenic particulate pollution can have in the albedo of marine stratiform clouds.
Abstract
The effects of anthropogenic particulate emissions from ships on the radiative, microphysical, and chemical properties of moderately polluted marine stratiform clouds are examined. A case study of two ships in the same air mass is presented where one of the vessels caused a discernible ship track while the other did not. In situ measurements of cloud droplet size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to measurements of cloud radiative properties. The differences between the aerosol in the two ship plumes are discussed;these indicate that combustion-derived particles in the size range of about 0.03–0.3-μm radius were those that caused the microphysical changes in the clouds that were responsible for the ship track.
The authors examine the processes behind ship track formation in a moderately polluted marine boundary layer as an example of the effects that anthropogenic particulate pollution can have in the albedo of marine stratiform clouds.