Search Results

You are looking at 21 - 21 of 21 items for :

  • Author or Editor: M. E. Brooks x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
William L. Smith Jr.
,
Christy Hansen
,
Anthony Bucholtz
,
Bruce E. Anderson
,
Matthew Beckley
,
Joseph G. Corbett
,
Richard I. Cullather
,
Keith M. Hines
,
Michelle Hofton
,
Seiji Kato
,
Dan Lubin
,
Richard H. Moore
,
Michal Segal Rosenhaimer
,
Jens Redemann
,
Sebastian Schmidt
,
Ryan Scott
,
Shi Song
,
John D. Barrick
,
J. Bryan Blair
,
David H. Bromwich
,
Colleen Brooks
,
Gao Chen
,
Helen Cornejo
,
Chelsea A. Corr
,
Seung-Hee Ham
,
A. Scott Kittelman
,
Scott Knappmiller
,
Samuel LeBlanc
,
Norman G. Loeb
,
Colin Miller
,
Louis Nguyen
,
Rabindra Palikonda
,
David Rabine
,
Elizabeth A. Reid
,
Jacqueline A. Richter-Menge
,
Peter Pilewskie
,
Yohei Shinozuka
,
Douglas Spangenberg
,
Paul Stackhouse
,
Patrick Taylor
,
K. Lee Thornhill
,
David van Gilst
, and
Edward Winstead

Abstract

The National Aeronautics and Space Administration (NASA)’s Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE) acquired unique aircraft data on atmospheric radiation and sea ice properties during the critical late summer to autumn sea ice minimum and commencement of refreezing. The C-130 aircraft flew 15 missions over the Beaufort Sea between 4 and 24 September 2014. ARISE deployed a shortwave and longwave broadband radiometer (BBR) system from the Naval Research Laboratory; a Solar Spectral Flux Radiometer (SSFR) from the University of Colorado Boulder; the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) from the NASA Ames Research Center; cloud microprobes from the NASA Langley Research Center; and the Land, Vegetation and Ice Sensor (LVIS) laser altimeter system from the NASA Goddard Space Flight Center. These instruments sampled the radiant energy exchange between clouds and a variety of sea ice scenarios, including prior to and after refreezing began. The most critical and unique aspect of ARISE mission planning was to coordinate the flight tracks with NASA Cloud and the Earth’s Radiant Energy System (CERES) satellite sensor observations in such a way that satellite sensor angular dependence models and derived top-of-atmosphere fluxes could be validated against the aircraft data over large gridbox domains of order 100–200 km. This was accomplished over open ocean, over the marginal ice zone (MIZ), and over a region of heavy sea ice concentration, in cloudy and clear skies. ARISE data will be valuable to the community for providing better interpretation of satellite energy budget measurements in the Arctic and for process studies involving ice–cloud–atmosphere energy exchange during the sea ice transition period.

Full access