Search Results

You are looking at 21 - 23 of 23 items for

  • Author or Editor: M. Ravichandran x
  • Refine by Access: All Content x
Clear All Modify Search
P. A. Francis
,
A. K. Jithin
,
J. B. Effy
,
A. Chatterjee
,
K. Chakraborty
,
A. Paul
,
B. Balaji
,
S. S. C. Shenoi
,
P. Biswamoy
,
A. Mukherjee
,
P. Singh
,
B. Deepsankar
,
S. Siva Reddy
,
P. N. Vinayachandran
,
M. S. Girish Kumar
,
T. V. S. Udaya Bhaskar
,
M. Ravichandran
,
A. S. Unnikrishnan
,
D. Shankar
,
A. Prakash
,
S. G. Aparna
,
R. Harikumar
,
K. Kaviyazhahu
,
K. Suprit
,
R. V. Shesu
,
N. Kiran Kumar
,
N. Srinivasa Rao
,
K. Annapurnaiah
,
R. Venkatesan
,
A. S. Rao
,
E. N. Rajagopal
,
V. S. Prasad
,
M. D. Gupta
,
T. M. Balakrishnan Nair
,
E. P. R. Rao
, and
B. V. Satyanarayana
Full access
Hemantha W. Wijesekera
,
Emily Shroyer
,
Amit Tandon
,
M. Ravichandran
,
Debasis Sengupta
,
S. U. P. Jinadasa
,
Harindra J. S. Fernando
,
Neeraj Agrawal
,
K. Arulananthan
,
G. S. Bhat
,
Mark Baumgartner
,
Jared Buckley
,
Luca Centurioni
,
Patrick Conry
,
J. Thomas Farrar
,
Arnold L. Gordon
,
Verena Hormann
,
Ewa Jarosz
,
Tommy G. Jensen
,
Shaun Johnston
,
Matthias Lankhorst
,
Craig M. Lee
,
Laura S. Leo
,
Iossif Lozovatsky
,
Andrew J. Lucas
,
Jennifer Mackinnon
,
Amala Mahadevan
,
Jonathan Nash
,
Melissa M. Omand
,
Hieu Pham
,
Robert Pinkel
,
Luc Rainville
,
Sanjiv Ramachandran
,
Daniel L. Rudnick
,
Sutanu Sarkar
,
Uwe Send
,
Rashmi Sharma
,
Harper Simmons
,
Kathleen M. Stafford
,
Louis St. Laurent
,
Karan Venayagamoorthy
,
Ramasamy Venkatesan
,
William J. Teague
,
David W. Wang
,
Amy F. Waterhouse
,
Robert Weller
, and
Caitlin B. Whalen

Abstract

Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.

Full access
P. A. Francis
,
A. K. Jithin
,
J. B. Effy
,
A. Chatterjee
,
K. Chakraborty
,
A. Paul
,
B. Balaji
,
S. S. C. Shenoi
,
P. Biswamoy
,
A. Mukherjee
,
P. Singh
,
B. Deepsankar
,
S. Siva Reddy
,
P. N. Vinayachandran
,
M. S. Girish Kumar
,
T. V. S. Udaya Bhaskar
,
M. Ravichandran
,
A. S. Unnikrishnan
,
D. Shankar
,
A. Prakash
,
S. G. Aparna
,
R. Harikumar
,
K. Kaviyazhahu
,
K. Suprit
,
R. V. Shesu
,
N. Kiran Kumar
,
N. Srinivasa Rao
,
K. Annapurnaiah
,
R. Venkatesan
,
A. S. Rao
,
E. N. Rajagopal
,
V. S. Prasad
,
M. D. Gupta
,
T. M. Balakrishnan Nair
,
E. P. R. Rao
, and
B. V. Satyanarayana

Abstract

A good understanding of the general circulation features of the oceans, particularly of the coastal waters, and ability to predict the key oceanographic parameters with good accuracy and sufficient lead time are necessary for the safe conduct of maritime activities such as fishing, shipping, and offshore industries. Considering these requirements and buoyed by the advancements in the field of ocean modeling, data assimilation, and ocean observation networks along with the availability of the high-performance computational facility in India, Indian National Centre for Ocean Information Services has set up a “High-Resolution Operational Ocean Forecast and Reanalysis System” (HOOFS) with an aim to provide accurate ocean analysis and forecasts for the public, researchers, and other types of users like navigators and the Indian Coast Guard. Major components of HOOFS are (i) a suite of numerical ocean models configured for the Indian Ocean and the coastal waters using the Regional Ocean Modeling System (ROMS) for forecasting physical and biogeochemical state of the ocean and (ii) the data assimilation based on local ensemble transform Kalman filter that assimilates in situ and satellite observations in ROMS. Apart from the routine forecasts of key oceanographic parameters, a few important applications such as (i) Potential Fishing Zone forecasting system and (ii) Search and Rescue Aid Tool are also developed as part of the HOOFS project. The architecture of HOOFS, an account of the quality of ocean analysis and forecasts produced by it and important applications developed based on HOOFS are briefly discussed in this article.

Free access