Search Results

You are looking at 21 - 23 of 23 items for :

  • Author or Editor: Margaret LeMone x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Joseph G. Alfieri
,
Dev Niyogi
,
Peter D. Blanken
,
Fei Chen
,
Margaret A. LeMone
,
Kenneth E. Mitchell
,
Michael B. Ek
, and
Anil Kumar

Abstract

Vegetated surfaces, such as grasslands and croplands, constitute a significant portion of the earth’s surface and play an important role in land–atmosphere exchange processes. This study focuses on one important parameter used in describing the exchange of moisture from vegetated surfaces: the minimum canopy resistance (r c min ). This parameter is used in the Jarvis canopy resistance scheme that is incorporated into the Noah and many other land surface models. By using an inverted form of the Jarvis scheme, r c min is determined from observational data collected during the 2002 International H2O Project (IHOP_2002). The results indicate that r c min is highly variable both site to site and over diurnal and longer time scales. The mean value at the grassland sites in this study is 96 s m−1 while the mean value for the cropland (winter wheat) sites is one-fourth that value at 24 s m−1. The mean r c min for all the sites is 72 s m−1 with a standard deviation of 39 s m−1. This variability is due to both the empirical nature of the Jarvis scheme and a combination of changing environmental conditions, such as plant physiology and plant species composition, that are not explicitly considered by the scheme. This variability in r c min has important implications for land surface modeling where r c min is often parameterized as a constant. For example, the Noah land surface model parameterizes r c min for the grasslands and croplands types in this study as 40 s m−1. Tests with the coupled Weather Research and Forecasting (WRF)–Noah model indicate that the using the modified values of r c min from this study improves the estimates of latent heat flux; the difference between the observed and modeled moisture flux decreased by 50% or more. While land surface models that estimate transpiration using Jarvis-type relationships may be improved by revising the r c min values for grasslands and croplands, updating the r c min will not fully account for the variability in r c min observed in this study. As such, it may be necessary to replace the Jarvis scheme currently used in many land surface and numerical weather prediction models with a physiologically based estimate of the canopy resistance.

Full access
Margaret A. LeMone
,
Fei Chen
,
Mukul Tewari
,
Jimy Dudhia
,
Bart Geerts
,
Qun Miao
,
Richard L. Coulter
, and
Robert L. Grossman

Abstract

Fair-weather data from the May–June 2002 International H2O Project (IHOP_2002) 46-km eastern flight track in southeast Kansas are compared to simulations using the advanced research version of the Weather Research and Forecasting model coupled to the Noah land surface model (LSM), to gain insight into how the surface influences convective boundary layer (CBL) fluxes and structure, and to evaluate the success of the modeling system in representing CBL structure and evolution. This offers a unique look at the capability of the model on scales the length of the flight track (46 km) and smaller under relatively uncomplicated meteorological conditions.

It is found that the modeled sensible heat flux H is significantly larger than observed, while the latent heat flux (LE) is much closer to observations. The slope of the best-fit line ΔLE/ΔH to a plot of LE as a function of H, an indicator of horizontal variation in available energy H + LE, for the data along the flight track, was shallower than observed. In a previous study of the IHOP_2002 western track, similar results were explained by too small a value of the parameter C in the Zilitinkevich equation used in the Noah LSM to compute the roughness length for heat and moisture flux from the roughness length for momentum, which is supplied in an input table; evidence is presented that this is true for the eastern track as well. The horizontal variability in modeled fluxes follows the soil moisture pattern rather than vegetation type, as is observed; because the input land use map does not capture the observed variation in vegetation. The observed westward rise in CBL depth is successfully modeled for 3 of the 4 days, but the actual depths are too high, largely because modeled H is too high. The model reproduces the timing of observed cumulus cloudiness for 3 of the 4 days.

Modeled clouds lead to departures from the typical clear-sky straight line relating surface H to LE for a given model time, making them easy to detect. With spatial filtering, a straight slope line can be recovered. Similarly, larger filter lengths are needed to produce a stable slope for observed fluxes when there are clouds than for clear skies.

Full access
Margaret A. LeMone
,
Fei Chen
,
Mukul Tewari
,
Jimy Dudhia
,
Bart Geerts
,
Qun Miao
,
Richard L. Coulter
, and
Robert L. Grossman

Abstract

Fair-weather data along the May–June 2002 International H2O Project (IHOP_2002) eastern track and the nearby Argonne Boundary Layer Experiments (ABLE) facility in southeast Kansas are compared to numerical simulations to gain insight into how the surface influences convective boundary layer (CBL) structure, and to evaluate the success of the modeling system in replicating the observed behavior. Simulations are conducted for 4 days, using the Advanced Research version of the Weather Research and Forecasting (WRF) model coupled to the Noah land surface model (LSM), initialized using the High-Resolution Land Data Assimilation System (HRLDAS). Because the observations focus on phenomena less than 60 km in scale, the model is run with 1-km grid spacing, offering a critical look at high-resolution model behavior in an environment uncomplicated by precipitation.

The model replicates the type of CBL structure on scales from a few kilometers to ∼100 km, but some features at the kilometer scales depend on the grid spacing. Mesoscale (tens of kilometers) circulations were clearly evident on 2 of the 4 days (30 May and 20 June), clearly not evident on 1 day (22 June), with the situation for the fourth day (17 June) ambiguous. Both observed and modeled surface-heterogeneity-generated mesoscale circulations are evident for 30 May. On the other hand, 20 June satellite images show north-northwest–south-southeast cloud streets (rolls) modulated longitudinally, presumably by tropospheric gravity waves oriented normal to the roll axis, creating northeast–southwest ridges and valleys spaced 50–100 km apart. Modeled cloud streets showed similar longitudinal modulation, with the associated two-dimensional structure having maximum amplitude above the CBL and no relationship to the CBL temperature distribution; although there were patches of mesoscale vertical velocity correlated with CBL temperature. On 22 June, convective rolls were the dominant structure in both model and observations.

For the 3 days for which satellite images show cloud streets, WRF produces rolls with the right orientation and wavelength, which grows with CBL depth. Modeled roll structures appeared for the range of CBL depth to Obukhov length ratios (−zi /L) associated with rolls. However, sensitivity tests show that the roll wavelength is also related to the grid spacing, and the modeled convection becomes more cellular with smaller grid spacing.

Full access