Search Results
You are looking at 21 - 30 of 61 items for
- Author or Editor: Michael Ghil x
- Refine by Access: All Content x
Abstract
A mixture model is a flexible probability density estimation technique, consisting of a linear combination of k component densities. Such a model is applied to estimate clustering in Northern Hemisphere (NH) 700-mb geopotential height anomalies. A key feature of this approach is its ability to estimate a posterior probability distribution for k, the number of clusters, given the data and the model. The number of clusters that is most likely to fit the data is thus determined objectively.
A dataset of 44 winters of NH 700-mb fields is projected onto its two leading empirical orthogonal functions (EOFs) and analyzed using mixtures of Gaussian components. Cross-validated likelihood is used to determine the best value of k, the number of clusters. The posterior probability so determined peaks at k = 3 and thus yields clear evidence for three clusters in the NH 700-mb data. The three-cluster result is found to be robust with respect to variations in data preprocessing and data analysis parameters. The spatial patterns of the three clusters’ centroids bear a high degree of qualitative similarity to the three clusters obtained independently by Cheng and Wallace, using hierarchical clustering on 500-mb NH winter data: the Gulf of Alaska ridge, the high over southern Greenland, and the enhanced climatological ridge over the Rockies.
Separating the 700-mb data into Pacific (PAC) and Atlantic (ATL) sector maps reveals that the optimal k value is 2 for both the PAC and ATL sectors. The respective clusters consist of Kimoto and Ghil’s Pacific–North American (PNA) and reverse PNA regimes, as well as the zonal and blocked phases of the North Atlantic oscillation. The connections between our sectorial and hemispheric results are discussed from the perspective of large-scale atmospheric dynamics.
Abstract
A mixture model is a flexible probability density estimation technique, consisting of a linear combination of k component densities. Such a model is applied to estimate clustering in Northern Hemisphere (NH) 700-mb geopotential height anomalies. A key feature of this approach is its ability to estimate a posterior probability distribution for k, the number of clusters, given the data and the model. The number of clusters that is most likely to fit the data is thus determined objectively.
A dataset of 44 winters of NH 700-mb fields is projected onto its two leading empirical orthogonal functions (EOFs) and analyzed using mixtures of Gaussian components. Cross-validated likelihood is used to determine the best value of k, the number of clusters. The posterior probability so determined peaks at k = 3 and thus yields clear evidence for three clusters in the NH 700-mb data. The three-cluster result is found to be robust with respect to variations in data preprocessing and data analysis parameters. The spatial patterns of the three clusters’ centroids bear a high degree of qualitative similarity to the three clusters obtained independently by Cheng and Wallace, using hierarchical clustering on 500-mb NH winter data: the Gulf of Alaska ridge, the high over southern Greenland, and the enhanced climatological ridge over the Rockies.
Separating the 700-mb data into Pacific (PAC) and Atlantic (ATL) sector maps reveals that the optimal k value is 2 for both the PAC and ATL sectors. The respective clusters consist of Kimoto and Ghil’s Pacific–North American (PNA) and reverse PNA regimes, as well as the zonal and blocked phases of the North Atlantic oscillation. The connections between our sectorial and hemispheric results are discussed from the perspective of large-scale atmospheric dynamics.
Abstract
Signatures of nonlinear dynamics are analyzed by studying the phase-space tendencies of a global baroclinic, quasigeostrophic, three-level (QG3) model with topography. Nonlinear, stochastic, low-order prototypes of the full QG3 model are constructed in the phase space of this model’s empirical orthogonal functions using the empirical model reduction (EMR) approach. The phase-space tendencies of the EMR models closely match the full QG3 model’s tendencies. The component of these tendencies that is not linearly parameterizable is shown to be dominated by the interactions between “resolved” modes rather than by multiplicative “noise” associated with unresolved modes. The method of defining the leading resolved modes and the interactions between them plays a key role in understanding the nature of the QG3 model’s dynamics, whether linear or nonlinear, deterministic or stochastic.
Abstract
Signatures of nonlinear dynamics are analyzed by studying the phase-space tendencies of a global baroclinic, quasigeostrophic, three-level (QG3) model with topography. Nonlinear, stochastic, low-order prototypes of the full QG3 model are constructed in the phase space of this model’s empirical orthogonal functions using the empirical model reduction (EMR) approach. The phase-space tendencies of the EMR models closely match the full QG3 model’s tendencies. The component of these tendencies that is not linearly parameterizable is shown to be dominated by the interactions between “resolved” modes rather than by multiplicative “noise” associated with unresolved modes. The method of defining the leading resolved modes and the interactions between them plays a key role in understanding the nature of the QG3 model’s dynamics, whether linear or nonlinear, deterministic or stochastic.
Abstract
This study examines the flow induced in a highly idealized atmospheric model by an east–west-oriented oceanic thermal front. The model has a linear marine boundary layer coupled to a quasigeostrophic, equivalent- barotropic free atmosphere. The vertical velocity at the top of the boundary layer drives the flow in the free atmosphere and produces an eastward jet, parallel to the oceanic front's isotherms. A large gyre develops on either side of this jet, cyclonic to the north and anticyclonic to the south of it. As the jet intensifies during spinup from rest, it becomes unstable. The most unstable wave has a length of about 500 km, it evolves into a meander, and eddies detach from the eastern edge of each gyre.
The dependence of the atmospheric dynamics on the strength T∗ of the oceanic front is studied. The Gulf Stream and Kuroshio fronts correspond roughly, in the scaling used here, to T∗ ≅ 7°C. For weak fronts, T∗ ≤ 4°C, the circulation is steady and exhibits two large, antisymmetric gyres separated by a westerly zonal jet. As the front strengthens, 4 < T∗ < 5, the solution undergoes Hopf bifurcation to become periodic in time, with a period of 30 days, and spatially asymmetric. The bifurcation is due to the westerly jet's barotropic instability, which has a symmetric spatial pattern. The addition of this pattern to the antisymmetric mean results in the overall asymmetry of the full solution. The spatial scale and amplitude of the symmetric, internally generated, and antisymmetric, forced mode increase with the strength T∗ of the oceanic front. For T∗ ≥ 5°C, the solution becomes chaotic, but a dominant period still stands out above the broadband noise. This dominant period increases with T∗ overall, but the increase is not monotonic.
The oceanic front's intensity dictates the mean speed of the atmospheric jet. Two energy regimes are obtained. 1) In the low-energy regime, the SST front, and hence the atmospheric jet, are weak; in this regime, small meanders develop along the jet axis, and the dominant period is about 25 days. 2) In the high-energy regime, the SST front and the jet are strong; in it, large meanders and eddies develop along the jet, and the dominant oscillation has a period of about 70 days. The physical nature of the two types of oscillations is discussed, as are possible transitions between them when T∗ changes on very long time scales. The results are placed in the context of previous theories of ocean front effects on atmospheric flows, in which baroclinic phenomena are dominant.
Abstract
This study examines the flow induced in a highly idealized atmospheric model by an east–west-oriented oceanic thermal front. The model has a linear marine boundary layer coupled to a quasigeostrophic, equivalent- barotropic free atmosphere. The vertical velocity at the top of the boundary layer drives the flow in the free atmosphere and produces an eastward jet, parallel to the oceanic front's isotherms. A large gyre develops on either side of this jet, cyclonic to the north and anticyclonic to the south of it. As the jet intensifies during spinup from rest, it becomes unstable. The most unstable wave has a length of about 500 km, it evolves into a meander, and eddies detach from the eastern edge of each gyre.
The dependence of the atmospheric dynamics on the strength T∗ of the oceanic front is studied. The Gulf Stream and Kuroshio fronts correspond roughly, in the scaling used here, to T∗ ≅ 7°C. For weak fronts, T∗ ≤ 4°C, the circulation is steady and exhibits two large, antisymmetric gyres separated by a westerly zonal jet. As the front strengthens, 4 < T∗ < 5, the solution undergoes Hopf bifurcation to become periodic in time, with a period of 30 days, and spatially asymmetric. The bifurcation is due to the westerly jet's barotropic instability, which has a symmetric spatial pattern. The addition of this pattern to the antisymmetric mean results in the overall asymmetry of the full solution. The spatial scale and amplitude of the symmetric, internally generated, and antisymmetric, forced mode increase with the strength T∗ of the oceanic front. For T∗ ≥ 5°C, the solution becomes chaotic, but a dominant period still stands out above the broadband noise. This dominant period increases with T∗ overall, but the increase is not monotonic.
The oceanic front's intensity dictates the mean speed of the atmospheric jet. Two energy regimes are obtained. 1) In the low-energy regime, the SST front, and hence the atmospheric jet, are weak; in this regime, small meanders develop along the jet axis, and the dominant period is about 25 days. 2) In the high-energy regime, the SST front and the jet are strong; in it, large meanders and eddies develop along the jet, and the dominant oscillation has a period of about 70 days. The physical nature of the two types of oscillations is discussed, as are possible transitions between them when T∗ changes on very long time scales. The results are placed in the context of previous theories of ocean front effects on atmospheric flows, in which baroclinic phenomena are dominant.
Abstract
To understand the atmospheric response to a midlatitude oceanic front, this paper uses a quasigeostrophic (QG) model with moist processes. A well-known, three-level QG model on the sphere has been modified to include such processes in an aquaplanet setting. Its response is analyzed in terms of the upper-level atmospheric jet for sea surface temperature (SST) fronts of different profiles and located at different latitudes.
When the SST front is sufficiently strong, it tends to anchor the mean atmospheric jet, suggesting that the jet’s spatial location and pattern are mainly affected by the latitude of the SST front. Changes in the jet’s pattern are studied, focusing on surface sensible heat flux and on moisture effects through latent heat release. It is found that latent heat release due to moist processes is modified when the SST front is changed, and this is responsible for the meridional displacement of the jet. Moreover, both latent heat release and surface sensible heat flux contribute to the jet’s strengthening. These results highlight the role of SST fronts and moist processes in affecting the characteristics of the midlatitude jet stream and of its associated storm track, particularly their positions.
Abstract
To understand the atmospheric response to a midlatitude oceanic front, this paper uses a quasigeostrophic (QG) model with moist processes. A well-known, three-level QG model on the sphere has been modified to include such processes in an aquaplanet setting. Its response is analyzed in terms of the upper-level atmospheric jet for sea surface temperature (SST) fronts of different profiles and located at different latitudes.
When the SST front is sufficiently strong, it tends to anchor the mean atmospheric jet, suggesting that the jet’s spatial location and pattern are mainly affected by the latitude of the SST front. Changes in the jet’s pattern are studied, focusing on surface sensible heat flux and on moisture effects through latent heat release. It is found that latent heat release due to moist processes is modified when the SST front is changed, and this is responsible for the meridional displacement of the jet. Moreover, both latent heat release and surface sensible heat flux contribute to the jet’s strengthening. These results highlight the role of SST fronts and moist processes in affecting the characteristics of the midlatitude jet stream and of its associated storm track, particularly their positions.
Abstract
This study examines the flow induced by an east–west-oriented oceanic thermal front in a highly idealized baroclinic model. Previous work showed that thermal fronts could produce energetic midlatitude jets in an equivalent-barotropic atmosphere and that barotropic instabilities of this jet had dominant periods of 25–30 and 65–75 days.
The present study extends this work to a two-mode baroclinic free atmosphere. The baroclinic jet produced in this case is subject to both barotropic and baroclinic instabilities. A barotropic symmetric instability propagates westward with periods of roughly 30 days and is similar to those found in the equivalent-barotropic model. A baroclinic instability results in standing-dipole anomalies and oscillates with a period of 6–8 months. A mixed barotropic–baroclinic instability results in anomalies that propagate northward, perpendicular to the jet, with a period of 2–3 months. The later anomalies are reminiscent of the 70-day oscillation found over the North Atlantic in observed fields.
The atmospheric flow has two distinct states: the flow in the high-energy state exhibits two large gyres and a strong eastward jet; its antisymmetric component is dominant. The low-energy flow is characterized by small gyres and a weak jet.
The model’s dynamics depends on the layer-depth ratio. When the model is nearly equivalent-barotropic, symmetric oscillatory modes dominate. As the two layers become nearly equal, antisymmetric oscillatory modes become significant and the mean energy of the flow increases.
When the oceanic thermal front’s strength T* is weak (T* ≤ 1.5°C), the flow is steady. For intermediate values of the strength (1.5°C < T* < 3°C), several oscillatory instabilities set in. As the frontal strength increases further (T* ≥ 3°C), the flow becomes more turbulent. These results all depend on the atmospheric model’s horizontal resolution being sufficiently high.
Abstract
This study examines the flow induced by an east–west-oriented oceanic thermal front in a highly idealized baroclinic model. Previous work showed that thermal fronts could produce energetic midlatitude jets in an equivalent-barotropic atmosphere and that barotropic instabilities of this jet had dominant periods of 25–30 and 65–75 days.
The present study extends this work to a two-mode baroclinic free atmosphere. The baroclinic jet produced in this case is subject to both barotropic and baroclinic instabilities. A barotropic symmetric instability propagates westward with periods of roughly 30 days and is similar to those found in the equivalent-barotropic model. A baroclinic instability results in standing-dipole anomalies and oscillates with a period of 6–8 months. A mixed barotropic–baroclinic instability results in anomalies that propagate northward, perpendicular to the jet, with a period of 2–3 months. The later anomalies are reminiscent of the 70-day oscillation found over the North Atlantic in observed fields.
The atmospheric flow has two distinct states: the flow in the high-energy state exhibits two large gyres and a strong eastward jet; its antisymmetric component is dominant. The low-energy flow is characterized by small gyres and a weak jet.
The model’s dynamics depends on the layer-depth ratio. When the model is nearly equivalent-barotropic, symmetric oscillatory modes dominate. As the two layers become nearly equal, antisymmetric oscillatory modes become significant and the mean energy of the flow increases.
When the oceanic thermal front’s strength T* is weak (T* ≤ 1.5°C), the flow is steady. For intermediate values of the strength (1.5°C < T* < 3°C), several oscillatory instabilities set in. As the frontal strength increases further (T* ≥ 3°C), the flow becomes more turbulent. These results all depend on the atmospheric model’s horizontal resolution being sufficiently high.
Abstract
Persistent anomalies with recurrent spatial patterns play an important role in the atmosphere's low-frequency variability. We establish a connection between statistical and dynamical methods of description and prediction of persistent anomalies. This is done by computing and analyzing the empirical orthogonal functions (EOFs) in a simple deterministic model, on the one hand, and in Southern Hemisphere geopotential heights, on the other.
The dynamical model is governed by the fully nonlinear, equivalent-barotropic vorticity equation on the sphere, with simplified forcing, dissipation and topography. Model solutions exhibit persistent anomalies identifiable with blocked, zonal and wave-train anomalies in Northern Hemisphere atmospheric data. Flow structures similar to the patterns above occur as high-variance EOFs of this nonlinear model.
The Southern Hemisphere data we analyze consist in gridded daily maps of 500 mb heights from June 1972 to July 1983. Two types of persistent anomalies appear in this time series, both having a strong wavenumber-three component; they differ by the value of the constant phase of this wave and by the strength of the wavenumber-one component. The first two EOFs bear a striking resemblance to these two patterns.
We conclude that the dynamical interpretation of EOFs is their pointing from the time mean to the most populated regions of the system's phase space. Pursuing this interpretation, we introduce a Markov-chain formulation of transitions from one persistent anomaly regime to another, and discuss the implications for long-range forecasting.
Abstract
Persistent anomalies with recurrent spatial patterns play an important role in the atmosphere's low-frequency variability. We establish a connection between statistical and dynamical methods of description and prediction of persistent anomalies. This is done by computing and analyzing the empirical orthogonal functions (EOFs) in a simple deterministic model, on the one hand, and in Southern Hemisphere geopotential heights, on the other.
The dynamical model is governed by the fully nonlinear, equivalent-barotropic vorticity equation on the sphere, with simplified forcing, dissipation and topography. Model solutions exhibit persistent anomalies identifiable with blocked, zonal and wave-train anomalies in Northern Hemisphere atmospheric data. Flow structures similar to the patterns above occur as high-variance EOFs of this nonlinear model.
The Southern Hemisphere data we analyze consist in gridded daily maps of 500 mb heights from June 1972 to July 1983. Two types of persistent anomalies appear in this time series, both having a strong wavenumber-three component; they differ by the value of the constant phase of this wave and by the strength of the wavenumber-one component. The first two EOFs bear a striking resemblance to these two patterns.
We conclude that the dynamical interpretation of EOFs is their pointing from the time mean to the most populated regions of the system's phase space. Pursuing this interpretation, we introduce a Markov-chain formulation of transitions from one persistent anomaly regime to another, and discuss the implications for long-range forecasting.
Abstract
Weather regimes are used to determine changes in the statistical distribution of winter precipitation and temperature at eight locations within the western United States. Six regimes are identified from daily 700-mb heights during 46 winters (1949–95) over the North Pacific sector applying cluster analysis; these include the Pacific–North American (PNA) pattern, reverse-PNA, a tropical–Northern Hemisphere (TNH) regime, and a Pacific Ω block. Most of the regimes have a statistically significant effect on the local median temperature, as well as daily temperature extremes; differences between locations are secondary to the large-scale effects. Local precipitation frequency is also conditioned significantly by certain weather regimes, but differences between groups of locations are larger. Precipitation extremes are dispersed and hard to classify. The dependence of local temperature statistics on the warm- or cold-air advection associated with particular weather regimes is discussed, as is the dependence of precipitation anomalies on the regimes’ displaced storm tracks.
The extent to which the El Niño–Southern Oscillation modulates the probability of occurrence of each of the six weather regimes is then investigated. Warm event (El Niño) winters are found to be associated with a significant increase in prevalence of a TNH regime, in which negative height anomalies exhibit a northwest–southeast tilt over the North Pacific. During La Niña winters, this TNH regime occurs significantly less frequently, while a regime characterized by a ridge over southwestern North America becomes more prevalent. These two regimes are associated with regional precipitation-frequency anomalies of opposite sign, that contribute to a north–south contrast in precipitation anomalies over the western United States during El Niño and La Niña winters. On interdecadal timescales, the frequency-of-occurrence of the PNA pattern is found to be notably higher during the 1970s and early 1980s.
Abstract
Weather regimes are used to determine changes in the statistical distribution of winter precipitation and temperature at eight locations within the western United States. Six regimes are identified from daily 700-mb heights during 46 winters (1949–95) over the North Pacific sector applying cluster analysis; these include the Pacific–North American (PNA) pattern, reverse-PNA, a tropical–Northern Hemisphere (TNH) regime, and a Pacific Ω block. Most of the regimes have a statistically significant effect on the local median temperature, as well as daily temperature extremes; differences between locations are secondary to the large-scale effects. Local precipitation frequency is also conditioned significantly by certain weather regimes, but differences between groups of locations are larger. Precipitation extremes are dispersed and hard to classify. The dependence of local temperature statistics on the warm- or cold-air advection associated with particular weather regimes is discussed, as is the dependence of precipitation anomalies on the regimes’ displaced storm tracks.
The extent to which the El Niño–Southern Oscillation modulates the probability of occurrence of each of the six weather regimes is then investigated. Warm event (El Niño) winters are found to be associated with a significant increase in prevalence of a TNH regime, in which negative height anomalies exhibit a northwest–southeast tilt over the North Pacific. During La Niña winters, this TNH regime occurs significantly less frequently, while a regime characterized by a ridge over southwestern North America becomes more prevalent. These two regimes are associated with regional precipitation-frequency anomalies of opposite sign, that contribute to a north–south contrast in precipitation anomalies over the western United States during El Niño and La Niña winters. On interdecadal timescales, the frequency-of-occurrence of the PNA pattern is found to be notably higher during the 1970s and early 1980s.
Abstract
We derive a system of diagnostic equations for the velocity field, or “wind laws,” for a barotropic primitive-equation model of large-scale atmospheric flow. The derivation is mathematically exact and does not involve any physical assumptions, such as nondivergence or vanishing of derivatives of the divergence, which are not already present in the prognostic equations. Therefore, initial states computed by solving these diagnostic equations should be compatible with the type of motion described by the prognostic equations of the model, and should not generate initialization shocks when inserted into the prognostic model.
Based on the diagnostic system obtained, we are able to give precise meaning to the question whether the wind field is determined by the mass field and by its time history. The answer to this important question is affirmative, in the precise formulation we provide.
The diagnostic system corresponding to the chosen barotropic model is a generalization of the classical balance equation. The ellipticity condition for this system is derived and given a physical interpretation. Numerical solutions of the diagnostic system are exhibited, including cases in-which the system is of mixed elliptic-hyperbolic type.
Such diagnostic systems can be obtained for other primitive equation models. They are valid for all atmospheric scales and regions for which the prognostic models from which they are derived hold. Some problems concerning the possibility of implementing such a system in operational numerical weather prediction are discussed.
Abstract
We derive a system of diagnostic equations for the velocity field, or “wind laws,” for a barotropic primitive-equation model of large-scale atmospheric flow. The derivation is mathematically exact and does not involve any physical assumptions, such as nondivergence or vanishing of derivatives of the divergence, which are not already present in the prognostic equations. Therefore, initial states computed by solving these diagnostic equations should be compatible with the type of motion described by the prognostic equations of the model, and should not generate initialization shocks when inserted into the prognostic model.
Based on the diagnostic system obtained, we are able to give precise meaning to the question whether the wind field is determined by the mass field and by its time history. The answer to this important question is affirmative, in the precise formulation we provide.
The diagnostic system corresponding to the chosen barotropic model is a generalization of the classical balance equation. The ellipticity condition for this system is derived and given a physical interpretation. Numerical solutions of the diagnostic system are exhibited, including cases in-which the system is of mixed elliptic-hyperbolic type.
Such diagnostic systems can be obtained for other primitive equation models. They are valid for all atmospheric scales and regions for which the prognostic models from which they are derived hold. Some problems concerning the possibility of implementing such a system in operational numerical weather prediction are discussed.
Abstract
The atmospheric general circulation is characterized by both single- and double-jet patterns. The double-jet structure of the zonal mean zonal wind is analyzed in Southern Hemisphere observations for the two calendar months of November and April. The observed features are studied further in an idealized quasigeostrophic and a simplified general circulation model (GCM). Results suggest that capturing the bimodality of the zonal mean flow requires the parameterization of momentum and heat fluxes associated with baroclinic instability of the three-dimensional fields.
The role of eddy heat fluxes in generating the observed double-jet pattern is ascertained by using an analytical Eady model with stratospheric easterlies, in which a single wave disturbance interacts with the mean flow. In this model, the dual jets are generated by the zonal mean flow correction. Sensitivity of the results to the tropospheric vertical wind shear (or, equivalently, the meridional temperature gradient in the basic state’s troposphere) is also studied in the Eady model and compared to related experiments using the simplified GCM.
Abstract
The atmospheric general circulation is characterized by both single- and double-jet patterns. The double-jet structure of the zonal mean zonal wind is analyzed in Southern Hemisphere observations for the two calendar months of November and April. The observed features are studied further in an idealized quasigeostrophic and a simplified general circulation model (GCM). Results suggest that capturing the bimodality of the zonal mean flow requires the parameterization of momentum and heat fluxes associated with baroclinic instability of the three-dimensional fields.
The role of eddy heat fluxes in generating the observed double-jet pattern is ascertained by using an analytical Eady model with stratospheric easterlies, in which a single wave disturbance interacts with the mean flow. In this model, the dual jets are generated by the zonal mean flow correction. Sensitivity of the results to the tropospheric vertical wind shear (or, equivalently, the meridional temperature gradient in the basic state’s troposphere) is also studied in the Eady model and compared to related experiments using the simplified GCM.
Abstract
This paper addresses the effect of interannual variability in jet stream orientation on weather systems over the North Atlantic basin (NAB). The observational analysis relies on 65 yr of NCEP–NCAR reanalysis (1948–2012). The total daily kinetic energy of the geostrophic wind (GTKE) is taken as a measure of storm activity over the North Atlantic. The NAB is partitioned into four rectangular regions, and the winter average of GTKE is calculated for each quadrant. The spatial GTKE average over all four quadrants shows striking year-to-year variability and is strongly correlated with the North Atlantic Oscillation (NAO).
The GTKE strength in the northeast quadrant is closely related to the diffluence angle of the jet stream in the northwest quadrant. To gain insight into the relationship between the diffluence angle and its downstream impact, a quasigeostrophic baroclinic model is used. The results show that an initially zonal jet persists at its initial latitude over 30 days or longer, while a tilted jet propagates meridionally according to the Rossby wave group velocity, unless kept stationary by external forcing.
A Gulf Stream–like narrow sea surface temperature (SST) front provides the requisite forcing for an analytical steady-state solution to this problem. This SST front influences the atmospheric jet in the northwest quadrant: it both strengthens the jet and tilts it northward at higher levels, while its effect is opposite at lower levels. Reanalysis data confirm these effects, which are consistent with thermal wind balance. The results suggest that the interannual variability found in the GTKE may be caused by intrinsic variability of the thermal Gulf Stream front.
Abstract
This paper addresses the effect of interannual variability in jet stream orientation on weather systems over the North Atlantic basin (NAB). The observational analysis relies on 65 yr of NCEP–NCAR reanalysis (1948–2012). The total daily kinetic energy of the geostrophic wind (GTKE) is taken as a measure of storm activity over the North Atlantic. The NAB is partitioned into four rectangular regions, and the winter average of GTKE is calculated for each quadrant. The spatial GTKE average over all four quadrants shows striking year-to-year variability and is strongly correlated with the North Atlantic Oscillation (NAO).
The GTKE strength in the northeast quadrant is closely related to the diffluence angle of the jet stream in the northwest quadrant. To gain insight into the relationship between the diffluence angle and its downstream impact, a quasigeostrophic baroclinic model is used. The results show that an initially zonal jet persists at its initial latitude over 30 days or longer, while a tilted jet propagates meridionally according to the Rossby wave group velocity, unless kept stationary by external forcing.
A Gulf Stream–like narrow sea surface temperature (SST) front provides the requisite forcing for an analytical steady-state solution to this problem. This SST front influences the atmospheric jet in the northwest quadrant: it both strengthens the jet and tilts it northward at higher levels, while its effect is opposite at lower levels. Reanalysis data confirm these effects, which are consistent with thermal wind balance. The results suggest that the interannual variability found in the GTKE may be caused by intrinsic variability of the thermal Gulf Stream front.