Search Results

You are looking at 21 - 30 of 35 items for

  • Author or Editor: Min Chen x
  • Refine by Access: All Content x
Clear All Modify Search
Xin-Min Zeng
,
B. Wang
,
Y. Zhang
,
Y. Zheng
,
N. Wang
,
M. Wang
,
X. Yi
,
C. Chen
,
Z. Zhou
, and
H. Liu

Abstract

To quantify and explain effects of different land surface schemes (LSSs) on simulated geopotential height (GPH) fields, we performed simulations over China for the summer of 2003 using 12-member ensembles with the Weather Research and Forecasting (WRF) Model, version 3. The results show that while the model can generally simulate the seasonal and monthly mean GPH patterns, the effects of the LSS choice on simulated GPH fields are substantial, with the LSS-induced differences exceeding 10 gpm over a large area (especially the northwest) of China, which is very large compared with climate anomalies and forecast errors. In terms of the assessment measures for the four LSS ensembles [namely, the five-layer thermal diffusion scheme (SLAB), the Noah LSS (NOAH), the Rapid Update Cycle LSS (RUC), and the Pleim–Xiu LSS (PLEX)] in the WRF, the PLEX ensemble is the best, followed by the NOAH, RUC, and SLAB ensembles. The sensitivity of the simulated 850-hPa GPH is more significant than that of the 500-hPa GPH, with the 500-hPa GPH difference fields generally characterized by two large areas with opposite signs due to the smoothly varying nature of GPHs. LSS-induced GPH sensitivity is found to be higher than the GPH sensitivity induced by atmospheric boundary layer schemes. Moreover, theoretical analyses show that the LSS-induced GPH sensitivity is mainly caused by changes in surface fluxes (in particular, sensible heat flux), which further modify atmospheric temperature and pressure fields. The temperature and pressure fields generally have opposite contributions to changes in the GPH. This study emphasizes the importance of choosing and improving LSSs for simulating seasonal and monthly GPHs using regional climate models.

Full access
Tzu-Ying Yang
,
Cho-Ying Huang
,
Jehn-Yih Juang
,
Yi-Ying Chen
,
Chao-Tzuen Cheng
, and
Min-Hui Lo

Abstract

Fog plays a vital role in maintaining ecosystems in montane cloud forests. In these forests, a large amount of water on the surface of leaves and canopy (hereafter canopy water) evaporates during the morning. This biophysical process plays a critical factor in regulating afternoon fog formation. Recent studies have found that alterations in precipitation, temperature, humidity, and CO2 concentrations associated with future climate changes may affect terrestrial hydroclimatology, but the responses in cloud forests remain unclear. Utilizing numerical experiments with the Community Land Model, we explored changes in surface evaporative fluxes in Chi-Lan Mountain cloud forests in northeastern Taiwan under the RCP8.5 scenario with changes in the aforementioned various atmospheric variables. The results showed that increased rainfall intensity in climate change runs decreased the accumulation of canopy water, while larger water vapor concentrations led to more nighttime condensation on leaves. Elevated CO2 concentrations did not greatly impact canopy water amounts, but photosynthesis was enhanced, while transpiration was reduced and contributed to decreased latent heat fluxes, implying the importance of forest plant physiology in modulating land evaporative fluxes. Evapotranspiration decreased in Chi-Lan due to multiple combined factors, in contrast to the expected intensification in the global water cycle under global warming. The study, however, is restricted to an offline land surface model without land–atmosphere interactions and the interactions with adjacent grids, which deserves further analyses for the water cycle changes in the montane cloud forest regions.

Open access
Hua Zheng
,
Xiao-Hua Zhu
,
Ruixiang Zhao
,
Juntian Chen
,
Min Wang
,
Qiang Ren
,
Yansong Liu
,
Feng Nan
,
Fei Yu
, and
Jae-Hun Park

Abstract

Typhoon Mangkhut crossed the northeastern South China Sea (SCS) in September 2018 and induced energetic near-inertial waves (NIWs) that were captured by an array of 39 current- and pressure-recording inverted echo sounders and two tall moorings with acoustic Doppler current profilers and current meter sensors. The array extended from west of the Luzon Strait to the interior SCS, with the path of the typhoon cutting through the array. NIWs in the interior SCS had lower frequency than those near the Luzon Strait. After the typhoon crossed the SCS, Mangkhut-induced near-inertial currents in the upper ocean reached over 50 cm s−1. NIWs traveled southward for hundreds of kilometers, dominated by modes 2 and 3 in the upper and deep ocean. The horizontal phase speeds of mode 2 were ∼3.9 and ∼2.5 m s−1 north and south of the typhoon’s track, respectively, while those of mode 3 were ∼2.1 and ∼1.7 m s−1, respectively. Mode 5 was only identified in the north with a smaller phase speed. Owing to different vertical group velocities, the energy of mode-2 NIWs reached the deep ocean in 20 days, whereas the higher-mode NIWs required more time to transfer energy to the bottom. NIWs in the north were trapped and carried by a westward-propagating anticyclonic eddy, which enhanced the near-inertial kinetic energy at ∼300 m and lengthened the duration of energetic NIWs observed in the north.

Significance Statement

Near-inertial waves (NIWs), generally caused by wind (e.g., typhoons and monsoons) in the upper ocean, are one of the two types of energetic internal waves widely observed in the ocean. After their generation near the surface, energetic NIWs propagate downward and equatorward, thereby significantly contributing to turbulent mixing in the upper and deep ocean and acting as a mechanism of energy transfer from the surface to the deep ocean. The unprecedented NIW observations in the South China Sea describe the generation, propagation, and vertical normal modes of typhoon-induced NIWs in the upper and deep oceans, and contribute to knowledge regarding the dynamic responses of abyssal processes to typhoons.

Restricted access
Min Wang
,
Xiao-Hua Zhu
,
Hua Zheng
,
Juntian Chen
,
Zhao-Jun Liu
,
Qiang Ren
,
Yansong Liu
,
Feng Nan
,
Fei Yu
, and
Qiang Li

Abstract

Using a large-scale observation array of 27 simultaneous pressure-recording inverted echo sounders (PIESs), the standing wave features of the mode-1 M2 internal tide west of the Luzon Strait (LS) were identified. These features exhibited nonmonotonic spatial phase shifts and half-wavelength amplitude modulation, resulting in spatially varying amplitudes under PIES observations, which have not been previously observed in field observations west of the LS. Satellite altimeter measurements also identified standing-wave patterns consistent with the PIES observations. These patterns emanated from interference between the northwestward and southeastward beams from the LS and the slope of the southern Taiwan Strait, respectively. Near the LS, the two beams superimposed into partial standing waves, whereas the superimposed waves tended to become perfect standing waves near the slope of the southern Taiwan Strait. The nodes and antinodes of the wave shifted under the influence of an anticyclonic eddy. The eddy-induced background current modified the phase speed of the internal tides, and the superimposed standing-wave nodes and antinodes deflected clockwise. The node shifted during three anticyclonic eddy events, and two stations on two sides of the wave node showed opposite variations in amplitude.

Significance Statement

The internal tidal constituent (M2) propagating in opposite directions can result in standing waves, which have been frequently observed in global oceans but were absent west of the Luzon Strait (LS). Our observations (based on a large-scale array west of the LS) discovered a standing M2 internal tide, which stems from interference between the northwestward beams emanating from the LS and southeastward beams from the slope of the southern Taiwan Strait. Anticyclonic eddies play important roles in adjusting the amplitude of internal tides by deflecting the standing-wave nodes and antinodes clockwise. The study facilitates the understanding of the energy distribution and mixing processes west of the LS and provides a fresh perspective on the dynamic relationship between mesoscale perturbations and internal tides.

Restricted access
Hua Zheng
,
Xiao-Hua Zhu
,
Juntian Chen
,
Min Wang
,
Ruixiang Zhao
,
Chuanzheng Zhang
,
Ze-Nan Zhu
,
Qiang Ren
,
Yansong Liu
,
Feng Nan
, and
Fei Yu

Abstract

Topographic Rossby waves (TRWs) play an important role in deep-ocean dynamics and abyssal intraseasonal variations. Observational records from 15 current- and pressure-recording inverted echo sounders (CPIESs) and two moorings deployed in the northern Manila Trench (MT), South China Sea (SCS), for over 400 days were utilized to analyze the widely existing near-21-day bottom-trapped TRWs in the trench. The TRWs were generally generated in winter and summer, dominated by perturbations in the upper ocean. Kuroshio intrusion and its related variabilities contributed to the perturbations in winter, whereas the perturbations generated north of Luzon Island dominated in summer. Eddies north of Luzon propagated northwestward in the summer of 2018; however, these eddies caused the Kuroshio meanderings in the Luzon Strait (LS) in the summer of 2019. The variations in the Kuroshio path and the Kuroshio-related eddies induced TRWs in the deep ocean in regions with steep topography. However, the spatiotemporal distributions of TRWs were complex owing to the propagation of the waves. Some cases of TRWs showed no relation to the local upper-layer perturbations but propagated from adjacent regions. Some of these TRWs were induced by perturbations in the upper ocean in adjacent regions, and propagated anticlockwise in the MT with shallow water to their right, while others may be related to the intraseasonal variations in deep-water overflow in the LS and propagated northward. This study suggests that the Kuroshio and Kuroshio-related eddies significantly contribute to the dynamic processes associated with intraseasonal variations in the deep SCS through the generation of TRWs.

Significance Statement

Topographic Rossby waves (TRWs) are fluctuations generated when water columns travel across sloping topography under potential vorticity conservation. Based on observations of 15 current- and pressure-recording inverted echo sounders (CPIESs) and two moorings in the northern Manila Trench (MT) in the South China Sea (SCS), TRWs with periods of approximately 21 days were observed and analyzed. This study describes the generation, propagation, and spatiotemporal distribution of TRWs west of the LS and confirms that regional Kuroshio meanderings and upper eddies play important roles in the dynamic processes associated with intraseasonal variations in the deep SCS; the study may thus contribute to knowledge on the dynamic response of the abyssal current to mesoscale perturbations in the upper ocean.

Free access
Jen-Ping Chen
,
Tzu-Chin Tsai
,
Min-Duan Tzeng
,
Chi-Shuin Liao
,
Hung-Chi Kuo
, and
Jing-Shan Hong

Abstract

Microphysical perturbation experiments were conducted to investigate the sensitivity of convective heavy rain simulation to cloud microphysical parameterization and its feasibility for ensemble forecasts. An ensemble of 20 perturbation members differing in either the microphysics package or process treatments within a single scheme was applied to simulate 10 summer-afternoon heavy-rain convection cases. The simulations revealed substantial disagreements in the location and amplitude of peak rainfall among the microphysics-package and single-scheme members, with an overall spread of 57%–161%, 66%–161%, and 65%–149% of the observed average rainfall, maximum rainfall, and maximum intensity, respectively. The single-scheme members revealed that the simulation of heavy convective precipitation is quite sensitive to factors including ice-particle fall speed parameterization, aerosol type, ice particle shape, and size distribution representation. The microphysical ensemble can derive reasonable probability of occurrence for a location-specific heavy-rain forecast. Spatial-forecast performance indices up to 0.6 were attained by applying an optimal fuzzy radius of about 8 km for the warning-area coverage. The forecasts tend to be more successful for more organized convection. Spectral mapping methods were further applied to provide ensemble forecasts for the 10 heavy rainfall cases. For most cases, realistic spatial patterns were derived with spatial correlation up to 0.8. The quantitative performance in average rainfall, maximum rainfall, and maximum intensity from the ensembles reached correlations of 0.83, 0.84, and 0.51, respectively, with the observed values.

Significance Statement

Heavy rainfall from summer convections is stochastic in terms of intensity and location; therefore, an accurate deterministic forecast is often challenging. We designed perturbation experiments to explore weather forecasting models’ sensitivity to cloud microphysical parameterizations and the feasibility of application to ensemble forecast. Promising results were obtained from simulations of 10 real cases. The cloud microphysical ensemble approach may provide reasonable forecasts of heavy rainfall probability and convincing rainfall spatial distribution, particularly for more organized convection.

Free access
Jee-Hoon Jeong
,
Hans W. Linderholm
,
Sung-Ho Woo
,
Chris Folland
,
Baek-Min Kim
,
Seong-Joong Kim
, and
Deliang Chen

Abstract

The present study examines the impacts of snow initialization on surface air temperature by a number of ensemble seasonal predictability experiments using the NCAR Community Atmosphere Model version 3 (CAM3) AGCM with and without snow initialization. The study attempts to isolate snow signals on surface air temperature. In this preliminary study, any effects of variations in sea ice extent are ignored and do not explicitly identify possible impacts on atmospheric circulation. The Canadian Meteorological Center (CMC) daily snow depth analysis was used in defining initial snow states, where anomaly rescaling was applied in order to account for the systematic bias of the CAM3 snow depth with respect to the CMC analysis. Two suites of seasonal (3 months long) ensemble hindcasts starting at each month in the colder part of the year (September–April) with and without the snow initialization were performed for 12 recent years (1999–2010), and the predictability skill of surface air temperature was estimated. Results show that considerable potential predictability increases up to 2 months ahead can be attained using snow initialization. Relatively large increases are found over East Asia, western Russia, and western Canada in the later part of this period. It is suggested that the predictability increases are sensitive to the strength of snow–albedo feedback determined by given local climate conditions; large gains tend to exist over the regions of strong snow–albedo feedback. Implications of these results for seasonal predictability over the extratropical Northern Hemisphere and future direction for this research are discussed.

Full access
Yaodeng Chen
,
Hongli Wang
,
Jinzhong Min
,
Xiang-Yu Huang
,
Patrick Minnis
,
Ruizhi Zhang
,
Julie Haggerty
, and
Rabindra Palikonda

Abstract

Analysis of the cloud components in numerical weather prediction models using advanced data assimilation techniques has been a prime topic in recent years. In this research, the variational data assimilation (DA) system for the Weather Research and Forecasting (WRF) Model (WRFDA) is further developed to assimilate satellite cloud products that will produce the cloud liquid water and ice water analysis. Observation operators for the cloud liquid water path and cloud ice water path are developed and incorporated into the WRFDA system. The updated system is tested by assimilating cloud liquid water path and cloud ice water path observations from Global Geostationary Gridded Cloud Products at NASA. To assess the impact of cloud liquid/ice water path data assimilation on short-term regional numerical weather prediction (NWP), 3-hourly cycling data assimilation and forecast experiments with and without the use of the cloud liquid/ice water paths are conducted. It is shown that assimilating cloud liquid/ice water paths increases the accuracy of temperature, humidity, and wind analyses at model levels between 300 and 150 hPa after 5 cycles (15 h). It is also shown that assimilating cloud liquid/ice water paths significantly reduces forecast errors in temperature and wind at model levels between 300 and 150 hPa. The precipitation forecast skills are improved as well. One reason that leads to the improved analysis and forecast is that the 3-hourly rapid update cycle carries over the impact of cloud information from the previous cycles spun up by the WRF Model.

Full access
Min Wang
,
Xiao-Hua Zhu
,
Hua Zheng
,
Juntian Chen
,
Ruixiang Zhao
,
Zhao-Jun Liu
,
Qiang Ren
,
Yansong Liu
,
Feng Nan
,
Fei Yu
,
Jianfeng Wang
, and
Qiang Li

Abstract

Energetic internal tides (ITs) are generated from the Luzon Strait (LS) and propagate westward into the South China Sea (SCS). Owing to the lack of large-scale synchronous measurements, the propagation features and seasonal variations of diurnal ITs remain unclear. From 2018 to 2019, mode-1 diurnal ITs west of the LS were continuously observed using a large-scale moored array of 27 pressure-recording inverted echo sounders (PIESs) and a thermistor chain. Measurements confirmed that diurnal ITs radiate from the LS with a north–south asymmetrical pattern, with the most energetic channel located in the middle and south of the LS. The total energy radiated into the SCS across 120°E is 2.67 GW for the K1 ITs and 1.54 GW for the O1 ITs, approximately 2 times larger than those inferred from satellite observations. K1 dominates among the diurnal ITs, with its maximum isopycnal displacement (amplitude) and energy input to the SCS being the strongest in summer (i.e., 16.3 m and 2.81 GW, respectively). The propagation speed of K1 is higher in summer and autumn along the main channel (i.e., 4.33and 4.36 m s−1, respectively). Seasonal stratification and circulation play important roles in the seasonal variation of amplitude and propagation speed of the K1 ITs. The seasonal variability of diurnal-band ITs, which includes all diurnal constituents, is location-dependent and primarily results from the superposition of the K1 and P1 ITs. In particular, vertical displacement is strong in summer and winter along the main channel of the K1 and P1 ITs. The seasonal amplitude of K1 can modulate this seasonal feature.

Significance Statement

Internal tides (ITs) are internal waves at tidal frequencies. The Luzon Strait (LS) is one of the most energetic sites to generate large-amplitude ITs. The ITs propagate into the South China Sea (SCS), interact with mesoscale eddies, large-scale circulations, etc., and influence local hydrodynamics as well as ecosystem and sediment transport. This motivated an observation plan to investigate the ITs at the western entrance of the LS. From June 2018 to August 2019, an array of 28 PIESs was deployed in the northeastern SCS, almost covering the western entrance of the LS, to investigate the propagation properties of ITs including their amplitude, phase speed, wavelength, propagation direction, and energy fluxes and their annual and seasonal variations. Here, we primarily focus on the mode-1 diurnal ITs. The new insights enrich our understanding of IT dynamics and seasonal variations and support further improvements in numerical simulations.

Restricted access
Rong-Yu Gu
,
Min-Hui Lo
,
Chi-Ya Liao
,
Yi-Shin Jang
,
Jehn-Yih Juang
,
Cho-Ying Huang
,
Shih-Chieh Chang
,
Cheng-I Hsieh
,
Yi-Ying Chen
,
Housen Chu
, and
Kuang-Yu Chang

Abstract

Hydroclimate in the montane cloud forest (MCF) regions is unique for its frequent fog occurrence and abundant water interception by tree canopies. Latent heat (LH) flux, the energy flux associated with evapotranspiration (ET), plays an essential role in modulating energy and hydrological cycles. However, how LH flux is partitioned between transpiration (stomatal evaporation) and evaporation (nonstomatal evaporation) and how it impacts local hydroclimate remain unclear. In this study, we investigated how fog modulates the energy and hydrological cycles of MCF by using a combination of in situ observations and model simulations. We compared LH flux and associated micrometeorological conditions at two eddy-covariance sites—Chi-Lan (CL), an MCF, and Lien-Hua-Chih (LHC), a noncloud forest in Taiwan. The comparison between the two sites reveals an asymmetric LH flux with an early peak at 0900 local time in CL as opposed to LHC, where LH flux peaks at noon. The early peak of LH flux and its evaporative cooling dampen the increase in near-surface temperature during the morning hours in CL. The relatively small diurnal temperature range, abundant moisture brought by the valley wind, and local ET result in frequent afternoon fog formation. Fog water is then intercepted by the canopy, sustaining moist conditions throughout the night. To further illustrate this hydrological feedback, we used a land surface model to simulate how varying canopy water interception can affect surface energy and moisture budgets. Our study highlights the unique hydroclimatological cycle in the MCF and, specifically, the inseparable relationship between the canopy and near-surface meteorology during the diurnal cycle.

Open access