Search Results

You are looking at 21 - 30 of 50 items for

  • Author or Editor: Morris Weisman x
  • Refine by Access: All Content x
Clear All Modify Search
William C. Skamarock
,
Morris L. Weisman
, and
Joseph B. Klemp

Abstract

Simulations of squall lines, using nonhydrostatic convection-resolving models, have been limited to two dimensions or three dimensions with the assumption of along-line periodicity. The authors present 3D nonhydrostatic convection-resolving simulations, produced using an adaptive grid model, where the lines are finite in length and the restriction to along-line periodicity is removed. The base state for the simulations is characterized by weak, shallow shear and high convective available potential energy (CAPE), an environment in which longlived midlatitude mesoscale convective systems (MCSs) are observed. The simulated systems bear strong resemblance to many observed systems, suggesting that large-scale forcing, absent in the horizontally homogeneous environment, is not needed to produce many of the distinguishing features of midlatitude MCSs.

In simulations without Coriolis forcing, the presence of line ends leads to mature symmetric systems characterized by a central region of strong convection, trailing flanks of weaker convection, and a strong, centrally focused rear inflow. Simulations that include Coriolis forcing lead to asymmetric systems with significant system growth and migration to the right (south) of the original system centerline. In both cases the evolution of the leading-line convection is primarily controlled by the surface cold pool expansion, with Coriolis forcing promoting rightward system propagation. In the Coriolis simulation, a midlevel mesoscale convective vortex (MCV) forms in the north, to the rear of the convection, while the outflow region aloft is strongly anticyclonic. The northern location of the MCV is coincident with and influenced by a northward bias in the positive buoyancy anomaly aloft. Midlevel vertical vorticity generation by tilting of horizontal vorticity, both ambient and baroclinically generated, is observed in both the Coriolis and no-Coriolis simulations. On larger scales, the convergence of Coriolis rotation generates significant vorticity and is crucial to the formation of the MCV.

Full access
Richard Rotunno
,
Joseph B. Klemp
, and
Morris L. Weisman

Abstract

We study herein the mechanics of long-lived, line-oriented, precipitating cumulus convection (squall lines) using two- and three-dimensional numerical models of moist convection. These models, used in juxtaposition, enable us to address the important theoretical issue of whether a squall line is a system of special, long-lived cells, or whether it is a long-lived system of ordinary, short-lived cells. Our review of the observational literature indicates that the latter is the most consistent paradigm for the vast majority of cases but, on occasion, a squall line may be composed of essentially steady, supercell thunderstorms. The numerical experiments presented herein show that either type of squall line may develop from an initial line-like disturbance depending on the magnitude and orientation of the environmental shear with respect to the line. With shallow shear, oriented perpendicular to the line, a long-lived line evolves containing individually short-lived cells. Our analysis of this type of simulated squall line suggests that the interaction of a storm cell's cold surface. outflow with the low-level shear produces much-deeper and less-inhibited lifting than is possible without the low-level shear, making it easier for new cells to form and grow as old cells decay. Through interecomparsion of two- and three-dimensional squall-line simulations, we conclude that the essential physics of this type of squall line is contained in the two- dimensional framework. We argue that these results describe the physics of both midlatitude and tropical squall lines. Under conditions of deep strong shear at an angle to the supposed line, a line of supercells develops in which their respective three-dimensional circulations do not interfere with one another.

Full access
Richard Rotunno
,
Joseph B. Klemp
, and
Morris L. Weisman

Abstract

Abstract not available.

Full access
Rajul E. Pandya
,
Dale R. Durran
, and
Morris L. Weisman

Abstract

Midlatitude squall lines are typically trailed by a large region of stratiform cloudiness and precipitation with significant mesoscale flow features, including an ascending front to rear flow; a descending rear inflow jet; line-end vortices; and, at later times, mesoscale convective vortices. The present study suggests that the mesoscale circulation in the trailing stratiform region is primarily determined by the time-mean pattern of heating and cooling in the leading convective line. Analysis of the line-normal circulation shows that it develops as thermally generated gravity waves spread away from the leading line. Midlevel line-end vortices are the result of diabatically driven tilting of horizontal vorticity generated by the time-mean thermal forcing. In the presence of the Coriolis force, a symmetric thermal forcing generates an asymmetric stratiform circulation and a pattern of vertical displacement that resembles the comma-shaped stratiform anvil observed in real systems; this suggests that asymmetries in the cloud and circulation behind midlatitude squall lines are not necessarily the result of asymmetries in the convective leading line.

Full access
Clark Evans
,
Morris L. Weisman
, and
Lance F. Bosart

Abstract

In this study, the dynamical processes contributing to warm-core meso-β-scale vortex formation associated with the 8 May 2009 “super derecho” are examined utilizing two complementary quasi-Lagrangian approaches—a circulation budget and backward trajectory analyses—applied to a fortuitous numerical simulation of the event. Warm-core meso-β-scale vortex formation occurs in a deeply moist, potentially stable environment that is conducive to the development of near-surface rotation and is somewhat atypical compared to known derecho-supporting environments.

Air parcels in the vicinity of the developing vortex primarily originate near the surface in the streamwise vorticity-rich environment, associated with the vertical wind shear of the low-level jet, immediately to the east of the eastward-moving system. Cyclonic vertical vorticity is generated along inflowing air parcels primarily by the ascent-induced tilting of streamwise vorticity and amplified primarily by ascent-induced vortex tube stretching. Descent-induced tilting of crosswise vorticity contributes to cyclonic vertical vorticity generation for the small population of air parcels in the vicinity of the developing vortex that originate to its north and west. No consistent source of preexisting vertical vorticity is present within the environment.

Cyclonic circulation on the scale of the warm-core meso-β-scale vortex increases in the lower troposphere in response to the mean vortex-scale convergence of cyclonic absolute vorticity and the local expulsion of eddy anticyclonic vertical vorticity generated within the system’s cold pool. Increased cyclonic circulation is partially offset by the system-scale tilting of horizontal vorticity associated with the low-level jet, rear-inflow jet, environmental vertical wind shear, and rotational flow of the warm-core vortex itself.

Full access
Morris L. Weisman
,
Joseph B. Klemp
, and
Richard Rotunno

Abstract

Using a three-dimensional numerical cloud model, we investigate the effects of vertical wind shear on squall-line structure and evolution over a wide range of shear magnitudes, depths, and orientations relative to the line. We find that the simulated squall lines are most sensitive to the magnitude of the component of shear perpendicular to the line, and that we may reproduce much of the range of observed structures by varying this single parameter. For weak shear, a line of initially upright-to-downshear-tilted short-lived cells quickly tilts upshear, producing a wide band of weaker cells extending behind the surface outflow boundary. For moderate-to-strong shear, the circulation remains upright-to-downshear tilted for longer periods of time, with vigorous, short-lived cells confined to a relatively narrow band along the system's leading edge. At later times, however, these systems may also weaken as the circulation tilts upshear. For strong, deep shears oriented obliquely to the line, the squall line may be composed of quasi-steady, three-dimensional supercells. The squall-line lifecyle that occurs in most of the simulations is dependent on both the strength of the developing cold pool, which induces an upshear-tilted circulation, and the strength of the ambient low-level shear ahead of the line, which promotes a circulation tilting the system downshear. When these two factors are in balance, the overall system circulation remains upright, and we obtain the optimal conditions for deep lifting that promotes the regeneration of strong cells along the outflow boundary. In the current experiments, this optimal state occurs with 15–25 m s−1 of velocity change over the lowest 2.5 km AGL.

Full access
Adam J. Clark
,
William A. Gallus Jr.
, and
Morris L. Weisman

Abstract

Since 2003 the National Center for Atmospheric Research (NCAR) has been running various experimental convection-allowing configurations of the Weather Research and Forecasting Model (WRF) for domains covering a large portion of the central United States during the warm season (April–July). In this study, the skill of 3-hourly accumulated precipitation forecasts from a large sample of these convection-allowing simulations conducted during 2004–05 and 2007–08 is compared to that from operational North American Mesoscale (NAM) model forecasts using a neighborhood-based equitable threat score (ETS). Separate analyses were conducted for simulations run before and after the implementation in 2007 of positive-definite (PD) moisture transport for the NCAR-WRF simulations. The neighborhood-based ETS (denoted 〈ETS〉 r ) relaxes the criteria for “hits” (i.e., correct forecasts) by considering grid points within a specified radius r. It is shown that 〈ETS〉 r is more useful than the traditional ETS because 〈ETS〉 r can be used to diagnose differences in precipitation forecast skill between different models as a function of spatial scale, whereas the traditional ETS only considers the spatial scale of the verification grid. It was found that differences in 〈ETS〉 r between NCAR-WRF and NAM generally increased with increasing r, with NCAR-WRF having higher scores. Examining time series of 〈ETS〉 r for r = 100 and r = 0 km (which simply reduces to the “traditional” ETS), statistically significant differences between NCAR-WRF and NAM were found at many forecast lead times for 〈ETS〉100 but only a few times for 〈ETS〉0. Larger and more statistically significant differences occurred with the 2007–08 cases relative to the 2004–05 cases. Because of differences in model configurations and dominant large-scale weather regimes, a more controlled experiment would have been needed to diagnose the reason for the larger differences that occurred with the 2007–08 cases. Finally, a compositing technique was used to diagnose the differences in the spatial distribution of the forecasts. This technique implied westward displacement errors for NAM model forecasts in both sets of cases and in NCAR-WRF model forecasts for the 2007–08 cases. Generally, the results are encouraging because they imply that advantages in convection-allowing relative to convection-parameterizing simulations noted in recent studies are reflected in an objective neighborhood-based metric.

Full access
Todd P. Lericos
,
Henry E. Fuelberg
,
Morris L. Weisman
, and
Andrew I. Watson

Abstract

This study develops conceptual models of how a land–water interface affects the strength and structure of squall lines. Two-dimensional numerical simulations using the Advanced Regional Prediction System model are employed. Five sets of simulations are performed, each testing eight wind shear profiles of varying strength and depth. The first set of simulations contains a squall line but no surface or radiation physics. The second and third sets do not contain a squall line but include surface and radiation physics with a land surface on the right and a water surface on the left of the domain. The land is either warmer or cooler than the sea surface. These three simulations provide a control for later simulations. Finally, the remaining two simulation sets examine squall-line interaction with a relatively cool or warm land surface. The simulations document the thermodynamic and shear characteristics of squall lines interacting with the coastline. Results show that the inclusion of a land surface did not sufficiently affect the thermodynamic properties ahead of the squall line to change its overall structure. Investigation of ambient shear ahead of the squall line revealed that the addition of either warm or cool land reduced the strength of the net circulation in the inflow layer as measured by ambient shear. The amount of reduction in shear was found to be directly proportional to the depth and strength of the original shear layer. For stronger and deeper shears, the reduction in shear is sufficiently great that the buoyancy gradient circulation at the leading edge of the cold pool is no longer in balance with the shear circulation leading to changes in squall-line updraft structure. The authors hypothesize two ways by which a squall line might respond to passing from water to land. The weaker and more shallow the ambient shear, the greater likelihood that the squall-line structure remains unaffected by this transition. Conversely, the stronger and deeper the shear, the greater likelihood that the squall line changes updraft structure from upright/downshear to upshear tilted.

Full access
Morris L. Weisman
,
Kevin W. Manning
,
Ryan A. Sobash
, and
Craig S. Schwartz

Abstract

Herein, 14 severe quasi-linear convective systems (QLCS) covering a wide range of geographical locations and environmental conditions are simulated for both 1- and 3-km horizontal grid resolutions, to further clarify their comparative capabilities in representing convective system features associated with severe weather production. Emphasis is placed on validating the simulated reflectivity structures, cold pool strength, mesoscale vortex characteristics, and surface wind strength. As to the overall reflectivity characteristics, the basic leading-line trailing stratiform structure was often better defined at 1 versus 3 km, but both resolutions were capable of producing bow echo and line echo wave pattern type features. Cold pool characteristics for both the 1- and 3-km simulations were also well replicated for the differing environments, with the 1-km cold pools slightly colder and often a bit larger. Both resolutions captured the larger mesoscale vortices, such as line-end or bookend vortices, but smaller, leading-line mesoscale updraft vortices, that often promote QLCS tornadogenesis, were largely absent in the 3-km simulations. Finally, while maximum surface winds were only marginally well predicted for both resolutions, the simulations were able to reasonably differentiate the relative contributions of the cold pool versus mesoscale vortices. The present results suggest that while many QLCS characteristics can be reasonably represented at a grid scale of 3 km, some of the more detailed structures, such as overall reflectivity characteristics and the smaller leading-line mesoscale vortices would likely benefit from the finer 1-km grid spacing.

Significance Statement

High-resolution model forecasts using 3-km grid spacing have proven to offer significant forecast guidance enhancements for severe convective weather. However, it is unclear whether additional enhancements can be obtained by decreasing grid spacings further to 1 km. Herein, we compare forecasts of severe quasi-linear convective systems (QLCS) simulated using 1- versus 3-km grids to document the potential value added of such increases in grid resolutions. It is shown that some significant improvements can be obtained in the representation of many QLCS features, especially as regards reflectivity structure and in the development of small, leading-line mesoscale vortices that can contribute to both severe surface wind and tornado production.

Open access
Craig S. Schwartz
,
Glen S. Romine
,
Ryan A. Sobash
,
Kathryn R. Fossell
, and
Morris L. Weisman

Abstract

Beginning 7 April 2015, scientists at the U.S. National Center for Atmospheric Research (NCAR) began producing daily, real-time, experimental, 10-member ensemble forecasts with 3-km horizontal grid spacing across the entire conterminous United States. Graphical forecast products were posted in real time to the Internet, where they attracted a large following from both forecasters and researchers across government, academia, and the private sector. Although these forecasts were initially planned to terminate after one year, the project was extended through 30 December 2017 because of the enthusiastic community response. This article details the motivation for the NCAR ensemble project and describes the project’s impacts throughout the meteorological community. Classroom and operational use of the NCAR ensemble are discussed in addition to the diverse application of NCAR ensemble output for research purposes. Furthermore, some performance statistics are provided, and the NCAR ensemble website and data visualization approach are described. We hope the NCAR ensemble’s success will motivate additional experimental forecast demonstrations that transcend current operational capabilities, as forward-looking forecast systems are needed to accelerate operational development and provide students, young scientists, and forecasters with glimpses of what future modeling systems may look like. Additionally, the NCAR ensemble dataset is publicly available and can be used for meaningful research endeavors concerning many meteorological topics.

Full access