Search Results

You are looking at 21 - 30 of 33 items for

  • Author or Editor: Nathaniel L. Bindoff x
  • Refine by Access: All Content x
Clear All Modify Search
David E. Rupp
,
Philip W. Mote
,
Nathaniel L. Bindoff
,
Peter A. Stott
, and
David A. Robinson

Abstract

Significant declines in spring Northern Hemisphere (NH) snow cover extent (SCE) have been observed over the last five decades. As one step toward understanding the causes of this decline, an optimal fingerprinting technique is used to look for consistency in the temporal pattern of spring NH SCE between observations and simulations from 15 global climate models (GCMs) that form part of phase 5 of the Coupled Model Intercomparison Project. The authors examined simulations from 15 GCMs that included both natural and anthropogenic forcing and simulations from 7 GCMs that included only natural forcing. The decline in observed NH SCE could be largely explained by the combined natural and anthropogenic forcing but not by natural forcing alone. However, the 15 GCMs, taken as a whole, underpredicted the combined forcing response by a factor of 2. How much of this underprediction was due to underrepresentation of the sensitivity to external forcing of the GCMs or to their underrepresentation of internal variability has yet to be determined.

Full access
Ajitha Cyriac
,
Helen E. Phillips
,
Nathaniel L. Bindoff
,
Huabin Mao
, and
Ming Feng

Abstract

This study investigates the spatiotemporal variability of turbulent mixing in the eastern south Indian Ocean using a collection of data from electromagnetic autonomous profiling explorer (EM-APEX) profiling floats, shipboard CTD, and microstructure profilers. The floats collected 1566 profiles of temperature, salinity, and horizontal velocity data down to 1200 m over a period of about four months. A finescale parameterization is applied to the float and CTD data to estimate turbulent mixing. Elevated mixing is observed in the upper ocean, over bottom topography, and in mesoscale eddies. Mixing is enhanced in the anticyclonic eddies due to trapped near-inertial waves within the eddy. We found that cyclonic eddies contribute to turbulent mixing in the depth range of 500–1000 m, which is associated with downward-propagating internal waves. The mean diapycnal diffusivity over 250–500-m depth is O(10−6) m2 s−1, and it increases to O(10−5) m2 s−1 in 500–1000 m in cyclonic eddies. The turbulent mixing in this region has implications for water-mass transformation and large-scale circulation. Higher diffusivity [O(10−5) m2 s−1] is observed in the Antarctic Intermediate Water (AAIW) layer in cyclonic eddies, whereas weak diffusivity is observed in the Subantarctic Mode Water (SAMW) layer [O(10−6) m2 s−1]. Counterintuitively, then, the SAMW water-mass properties are strongly affected in cyclonic eddies, whereas the AAIW layer is less affected. Comparatively high diffusivity at the location of the South Indian Countercurrent (SICC) jets suggests there are wave–mean flow interactions in addition to the wave–eddy interactions that warrant further investigation.

Open access
Jan Jaap Meijer
,
Helen E. Phillips
,
Nathaniel L. Bindoff
,
Stephen R. Rintoul
, and
Annie Foppert

Abstract

Meanders formed where the Antarctic Circumpolar Current (ACC) interacts with topography have been identified as dynamical hot spots, characterized by enhanced eddy energy, momentum transfer, and cross-front exchange. However, few studies have used observations to diagnose the dynamics of ACC standing meanders. We use a synoptic hydrographic survey and satellite altimetry to explore the momentum and vorticity balance of a Subantarctic Front standing meander, downstream of the Southeast Indian Ridge. Along-stream anomalies of temperature in the upper ocean (150–600 m) show along-stream cooling entering the surface trough and along-stream warming entering the surface crest, while warming is observed from trough to crest in the deeper ocean (600–1500 m). Advection of relative vorticity is balanced by vortex stretching, as found in model studies of meandering currents. Meander curvature is sufficiently large that the flow is in gradient wind balance, resulting in ageostrophic horizontal divergence. This drives downwelling of cooler water along isopycnals entering the surface trough and upwelling of warmer water entering the surface crest, consistent with the observed evolution of temperature anomalies in the upper ocean. Progressive along-stream warming observed between 600 and 1500 m likely reflects cyclogenesis in the deep ocean. Vortex stretching couples the upper and lower water column, producing a low pressure at depth between surface trough and crest and cyclonic flow that carries cold water equatorward in the surface trough and warm water poleward in the surface crest (poleward heat flux). The results highlight gradient–wind balance and cyclogenesis as central to dynamics of standing meanders and their critical role in the ACC momentum and vorticity balance.

Significance Statement

The Antarctic Circumpolar Current (ACC) in the Southern Ocean is a nearly zonal current that encircles Antarctica. It acts as a barrier between warmer water equatorward and colder water poleward. In a few regions where the current encounters strong topographic changes, the current meanders and opens a pathway for heat to travel across the ACC toward Antarctica. We surveyed a meander in the ACC and examined the along-stream change of temperature. In the upper ocean, temperature changes are caused by a vertical circulation, bringing cool water down when entering the surface trough (the part of the meander closest to the equator), and warm water up when exiting the surface trough and entering the surface crest. At depth, cold water is transported equatorward in the surface trough and warm water poleward in the surface crest, leading to a net transport of heat poleward. This study highlights the importance of the secondary circulation within a meander for generating cross-ACC flows and moving heat toward Antarctica.

Open access
Benjamin J. E. Schroeter
,
Phil Reid
,
Nathaniel L. Bindoff
, and
Kelvin Michael

Abstract

The Australian Community Climate and Earth-System Simulator-Global (ACCESS-G) features an atmosphere-only numerical weather prediction (NWP) suite used operationally by the Australian Bureau of Meteorology to forecast weather conditions for the Antarctic. The current operational version of the forecast model, the Australian Parallel Suite v2 (APS2), has been used operationally since early 2016. To date, the performance of the model has been largely unverified for the Antarctic and anecdotal reports suggest challenges for model performance in the region. This study investigates the performance of ACCESS-G south of 50°S over 2017 and finds that model performance degrades toward the poles and in proportion to forecast horizon against a range of performance metrics. The model exhibits persistent negative surface and mean sea level pressure biases around the Adelie Land coast, which is linked to the underrepresentation of model winds to the west, and driven by positive screen temperature biases that inhibit modeled katabatic outflow. These results suggest that an improved representation of boundary layer parameterization could be implemented to improve model performance in the region.

Open access
Christopher J. Roach
,
Helen E. Phillips
,
Nathaniel L. Bindoff
, and
Stephen R. Rintoul

Abstract

This study presents a unique array of velocity profiles from Electromagnetic Autonomous Profiling Explorer (EM-APEX) profiling floats in the Antarctic Circumpolar Current (ACC) north of Kerguelen. The authors use these profiles to examine the nature of Ekman spirals, formed by the action of the wind on the ocean’s surface, in light of Ekman’s classical linear theory and more recent enhancements. Vertical decay scales of the Ekman spirals were estimated independently from current amplitude and rotation. Assuming a vertically uniform geostrophic current, decay scales from the Ekman current heading were twice as large as those from the current speed decay, indicating a compressed spiral, consistent with prior observations and violating the classical theory. However, if geostrophic shear is accurately removed, the observed Ekman spiral is as predicted by classical theory and decay scales estimated from amplitude decay and rotation converge toward a common value. No statistically robust relationship is found between stratification and Ekman decay scales. The results indicate that compressed spirals observed in the Southern Ocean arise from aliasing of depth-varying geostrophic currents into the Ekman spiral, as opposed to surface trapping of Ekman currents associated with stratification, and extends the geographical area of similar results from Drake Passage (Polton et al. 2013). Accounting for this effect, the authors find that constant viscosity Ekman models offer a reasonable description of momentum mixing into the upper ocean in the ACC north of Kerguelen. These results demonstrate the effectiveness of a new method and provide additional evidence that the same processes are active for the entire Southern Ocean.

Full access
Ryo Furue
,
Kévin Guerreiro
,
Helen E. Phillips
,
Julian P. McCreary Jr.
, and
Nathaniel L. Bindoff

Abstract

The Leeuwin Current System (LCS) along the coast of Western Australia consists of the poleward-flowing Leeuwin Current (LC), the equatorward-flowing Leeuwin Undercurrent (LUC), and neighboring flows in the south Indian Ocean (SIO). Using geostrophic currents obtained from a highly resolved (⅛°) hydrographic climatology [CSIRO Atlas of Regional Seas (CARS)], this study describes the spatial structure and annual variability of the LC, LUC, and SIO zonal currents, estimates their transports, and identifies linkages among them. In CARS, the LC is supplied partly by water from the tropics (an annual mean of 0.3 Sv; 1 Sv ≡ 106 m3 s−1) but mostly by shallow ( 200 m) eastward flows in the SIO (4.7 Sv), and it loses water by downwelling across the bottom of this layer (3.4 Sv). The downwelling is so strong that, despite the large SIO inflow, the horizontal transport of the LC does not much increase to the south (from 0.3 Sv at 22°S to 1.5 Sv at 34°S). This LC transport is significantly smaller than previously reported. The LUC is supplied by water from south of Australia (0.2 Sv), by eastward inflow from the SIO south of 28°S (1.6 Sv), and by the downwelling from the LC (1.6 Sv) and in response strengthens northward, reaching a maximum near 28°S (3.4 Sv). North of 28°S it loses water by outflow into subsurface westward flow (−3.6 Sv between 28° and 22°S) and despite an additional downwelling from the LC (1.9 Sv), it decreases to the north (1.7 Sv at 22°S). The seasonality of the LUC is described for the first time.

Full access
Ryo Furue
,
Kévin Guerreiro
,
Helen E. Phillips
,
Julian P. McCreary Jr.
, and
Nathaniel L. Bindoff
Full access
Maya I. Jakes
,
Helen E. Phillips
,
Annie Foppert
,
Ajitha Cyriac
,
Nathaniel L. Bindoff
,
Stephen R. Rintoul
, and
Andrew F. Thompson

Abstract

Eddy stirring at mesoscale oceanic fronts generates finescale filaments, visible in submesoscale-resolving model simulations and high-resolution satellite images of sea surface temperature, ocean color, and sea ice. Submesoscale filaments have widths of O(1–10) km and evolve on time scales of hours to days, making them extremely challenging to observe. Despite their relatively small scale, submesoscale processes play a key role in the climate system by providing a route to dissipation; altering the stratification of the ocean interior; and generating strong vertical velocities that exchange heat, carbon, nutrients, and oxygen between the mixed layer and the ocean interior. We present a unique set of in situ and satellite observations in a standing meander region of the Antarctic Circumpolar Current (ACC) that supports the theory of cold filamentary intensification—revealing enhanced vertical velocities and evidence of subduction and ventilation associated with finescale cold filaments. We show that these processes are not confined to the mixed layer; EM-APEX floats reveal enhanced downward velocities (>100 m day−1) and evidence of ageostrophic motion extending as deep as 1600 dbar, associated with a ∼20-km-wide cold filament. A finer-scale (∼5 km wide) cold filament crossed by a towed Triaxus is associated with anomalous chlorophyll and oxygen values extending at least 100–200 dbar below the base of the mixed layer, implying recent subduction and ventilation. Energetic standing meanders within the weakly stratified ACC provide an environment conductive to the generation of finescale filaments that can transport water mass properties across mesoscale fronts and deep into the ocean interior.

Open access
Gabriele C. Hegerl
,
Thomas R. Karl
,
Myles Allen
,
Nathaniel L. Bindoff
,
Nathan Gillett
,
David Karoly
,
Xuebin Zhang
, and
Francis Zwiers

Abstract

A significant influence of anthropogenic forcing has been detected in global- and continental-scale surface temperature, temperature of the free atmosphere, and global ocean heat uptake. This paper reviews outstanding issues in the detection of climate change and attribution to causes. The detection of changes in variables other than temperature, on regional scales and in climate extremes, is important for evaluating model simulations of changes in societally relevant scales and variables. For example, sea level pressure changes are detectable but are significantly stronger in observations than the changes simulated in climate models, raising questions about simulated changes in climate dynamics. Application of detection and attribution methods to ocean data focusing not only on heat storage but also on the penetration of the anthropogenic signal into the ocean interior, and its effect on global water masses, helps to increase confidence in simulated large-scale changes in the ocean.

To evaluate climate change signals with smaller spatial and temporal scales, improved and more densely sampled data are needed in both the atmosphere and ocean. Also, the problem of how model-simulated climate extremes can be compared to station-based observations needs to be addressed.

Full access
Fabio Boeira Dias
,
Catia M. Domingues
,
Simon J. Marsland
,
Stephen R. Rintoul
,
Petteri Uotila
,
Russell Fiedler
,
Mauricio M. Mata
,
Nathaniel L. Bindoff
, and
Abhishek Savita

Abstract

The Antarctic subpolar Southern Ocean (sSO) has fundamental climate importance. Antarctic Bottom Water (AABW) originates in the sSO and supplies the lower limb of the meridional overturning circulation (MOC), occupying 36% of ocean volume. Climate models struggle to represent continental shelf processes that form AABW. We explore sources of persistent model biases by examining response of the sSO to perturbations in surface forcing in a global ocean–sea ice model (ACCESS-OM2) that forms AABW both on shelf and in open ocean. The sSO response to individual and combined perturbations of surface heat, freshwater, and momentum fluxes follows the WCRP CMIP6 FAFMIP-protocol. Wind perturbation (i.e., a poleward shift and intensification of the westerlies) is dominant, enhancing AABW formation and accelerating the global MOC. This occurs through upwelling of warm waters and inhibition of sea ice growth during winter, which triggers large open water polynya (OWP) events with associated deep convection. These events occur in the Weddell and Ross Seas and their variability is associated with availability of heat at midocean depths. These OWPs cease when the heat reservoir is depleted. Effects of surface warming and freshening only partially compensate changes from increasing winds on ocean stratification and depletion of AABW formation. These results indicate that overly convective models, such ACCESS-OM2, can respond to CO2-perturbed scenarios by forming too much AABW in OWP, which might not hold in models without OWPs. This might contribute to the large intermodel spread thermosteric sea level projections, being relevant to the interpretation of future projections by current climate models.

Open access