Search Results

You are looking at 21 - 25 of 25 items for :

  • Author or Editor: Richard W. Reynolds x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Thomas M. Smith
,
Richard W. Reynolds
,
Robert E. Livezey
, and
Diane C. Stokes

Abstract

Studies of climate variability often rely on high quality sea surface temperature (SST) anomalies. Although the high-resolution National Centers for Environmental Prediction (formerly the National Meteorological Center) optimum interpolation (OI) SST analysis is satisfactory for these studies, the OI resolution cannot be maintained before November 1931 due to the lack of satellite data. Longer periods of SSTs have come from traditional analyses of in situ (ship and buoy) SST observations alone.

A new interpolation method is developed using spatial patterns from empirical orthogonal functions (E0Fs)—that is, a principal component analysis—to improve analyses of SST anomalies from 1950 to 1981. The method uses the more accurate OI analyses from 1982 to 1993 to produce the spatial EOFs. The dominant EOF modes (which correspond to the largest variance) are used as basis functions and are fit, in a least squares sense, to the in situ data to determine the time dependence of each mode. A complete field of SST anomalies is then reconstructed from these spatial and temporal modes. The use of EOF basis functions produces an improved in situ SST analysis that more realistically represents sparsely sampled, large-scale structures than traditional analyses.

The EOF reconstruction method is developed for the tropical Pacific for the period 1982–92 and compared to the OI. The method is then expanded to the globe and applied to a much longer period, 1950–92. The results show that the reconstructed fields generally have lower rms differences than the traditional in-situ-only analyses relative to the OI. In addition, the reconstructed fields were found to be smoother than the traditional analyses but with enhanced large-scale signals (e.g., ENSO). Regions where traditional analyses are adequate include some parts of the North Atlantic and the North Pacific, where in situ sampling is most dense. Although the shape of SST anomaly patterns can differ greatly between the reconstruction and traditional in situ analysis, area-averaged results from both analyses show similar anomalies.

Full access
Richard W. Reynolds
,
Nick A. Rayner
,
Thomas M. Smith
,
Diane C. Stokes
, and
Wanqiu Wang

Abstract

A weekly 1° spatial resolution optimum interpolation (OI) sea surface temperature (SST) analysis has been produced at the National Oceanic and Atmospheric Administration (NOAA) using both in situ and satellite data from November 1981 to the present. The weekly product has been available since 1993 and is widely used for weather and climate monitoring and forecasting. Errors in the satellite bias correction and the sea ice to SST conversion algorithm are discussed, and then an improved version of the OI analysis is developed. The changes result in a modest reduction in the satellite bias that leaves small global residual biases of roughly −0.03°C. The major improvement in the analysis occurs at high latitudes due to the new sea ice algorithm where local differences between the old and new analysis can exceed 1°C. Comparisons with other SST products are needed to determine the consistency of the OI. These comparisons show that the differences among products occur on large time- and space scales with monthly rms differences exceeding 0.5°C in some regions. These regions are primarily the mid- and high-latitude Southern Oceans and the Arctic where data are sparse, as well as high-gradient areas such as the Gulf Stream and Kuroshio where the gradients cannot be properly resolved on a 1° grid. In addition, globally averaged differences of roughly 0.05°C occur among the products on decadal scales. These differences primarily arise from the same regions where the rms differences are large. However, smaller unexplained differences also occur in other regions of the midlatitude Northern Hemisphere where in situ data should be adequate.

Full access
Thomas M. Smith
,
Richard W. Reynolds
,
Thomas C. Peterson
, and
Jay Lawrimore

Abstract

Observations of sea surface and land–near-surface merged temperature anomalies are used to monitor climate variations and to evaluate climate simulations; therefore, it is important to make analyses of these data as accurate as possible. Analysis uncertainty occurs because of data errors and incomplete sampling over the historical period. This manuscript documents recent improvements in NOAA’s merged global surface temperature anomaly analysis, monthly, in spatial 5° grid boxes. These improvements allow better analysis of temperatures throughout the record, with the greatest improvements in the late nineteenth century and since 1985. Improvements in the late nineteenth century are due to improved tuning of the analysis methods. Beginning in 1985, improvements are due to the inclusion of bias-adjusted satellite data. The old analysis (version 2) was documented in 2005, and this improved analysis is called version 3.

Full access
Richard W. Reynolds
,
Thomas M. Smith
,
Chunying Liu
,
Dudley B. Chelton
,
Kenneth S. Casey
, and
Michael G. Schlax

Abstract

Two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI). The analyses have a spatial grid resolution of 0.25° and a temporal resolution of 1 day. One product uses the Advanced Very High Resolution Radiometer (AVHRR) infrared satellite SST data. The other uses AVHRR and Advanced Microwave Scanning Radiometer (AMSR) on the NASA Earth Observing System satellite SST data. Both products also use in situ data from ships and buoys and include a large-scale adjustment of satellite biases with respect to the in situ data. Because of AMSR’s near-all-weather coverage, there is an increase in OI signal variance when AMSR is added to AVHRR. Thus, two products are needed to avoid an analysis variance jump when AMSR became available in June 2002. For both products, the results show improved spatial and temporal resolution compared to previous weekly 1° OI analyses.

The AVHRR-only product uses Pathfinder AVHRR data (currently available from January 1985 to December 2005) and operational AVHRR data for 2006 onward. Pathfinder AVHRR was chosen over operational AVHRR, when available, because Pathfinder agrees better with the in situ data. The AMSR–AVHRR product begins with the start of AMSR data in June 2002. In this product, the primary AVHRR contribution is in regions near land where AMSR is not available. However, in cloud-free regions, use of both infrared and microwave instruments can reduce systematic biases because their error characteristics are independent.

Full access
Richard W. Reynolds
,
Dudley B. Chelton
,
Jonah Roberts-Jones
,
Matthew J. Martin
,
Dimitris Menemenlis
, and
Christopher John Merchant

Abstract

Considerable effort is presently being devoted to producing high-resolution sea surface temperature (SST) analyses with a goal of spatial grid resolutions as low as 1 km. Because grid resolution is not the same as feature resolution, a method is needed to objectively determine the resolution capability and accuracy of SST analysis products. Ocean model SST fields are used in this study as simulated “true” SST data and subsampled based on actual infrared and microwave satellite data coverage. The subsampled data are used to simulate sampling errors due to missing data. Two different SST analyses are considered and run using both the full and the subsampled model SST fields, with and without additional noise. The results are compared as a function of spatial scales of variability using wavenumber auto- and cross-spectral analysis.

The spectral variance at high wavenumbers (smallest wavelengths) is shown to be attenuated relative to the true SST because of smoothing that is inherent to both analysis procedures. Comparisons of the two analyses (both having grid sizes of roughly ) show important differences. One analysis tends to reproduce small-scale features more accurately when the high-resolution data coverage is good but produces more spurious small-scale noise when the high-resolution data coverage is poor. Analysis procedures can thus generate small-scale features with and without data, but the small-scale features in an SST analysis may be just noise when high-resolution data are sparse. Users must therefore be skeptical of high-resolution SST products, especially in regions where high-resolution (~5 km) infrared satellite data are limited because of cloud cover.

Full access