Search Results
You are looking at 21 - 22 of 22 items for
- Author or Editor: Rita Roberts x
- Refine by Access: All Content x
Abstract
This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in the Córdoba and Mendoza provinces in Argentina and western Rio Grande do Sul State in Brazil in 2018–19 that involved more than 200 scientists and students from the United States, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates, and other unusual lightning phenomena, but few tornadoes. The five distinct scientific foci of RELAMPAGO—convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification—are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multinational education, public outreach, and social media data gathering associated with the campaign, is summarized.
Abstract
This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in the Córdoba and Mendoza provinces in Argentina and western Rio Grande do Sul State in Brazil in 2018–19 that involved more than 200 scientists and students from the United States, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates, and other unusual lightning phenomena, but few tornadoes. The five distinct scientific foci of RELAMPAGO—convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification—are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multinational education, public outreach, and social media data gathering associated with the campaign, is summarized.
As a response to extreme water shortages in southeast Queensland, Australia, brought about by reduced rainfall and increasing population, the Queensland government decided to explore the potential for cloud seeding to enhance rainfall. The Queensland Cloud Seeding Research Program (QCSRP) was conducted in the southeast Queensland region near Brisbane during the 2008/09 wet seasons. In addition to conducting an initial exploratory, randomized (statistical) cloud seeding study, multiparameter radar measurements and in situ aircraft microphysical data were collected. This comprehensive set of observational platforms was designed to improve the physical understanding of the effects of both ambient aerosols and seeding material on precipitation formation in southeast Queensland clouds. This focus on gaining physical understanding, along with the unique combination of modern observational platforms utilized in the program, set it apart from previous cloud seeding research programs. The overarching goals of the QCSRP were to 1) determine the characteristics of local cloud systems (i.e., weather and climate), 2) document the properties of atmospheric aerosol and their microphysical effects on precipitation formation, and 3) assess the impact of cloud seeding on cloud microphysical and dynamical processes to enhance rainfall. During the course of the program, it became clear that there is great variability in the natural cloud systems in the southeast Queensland region, and understanding that variability would be necessary before any conclusions could be made regarding the impact of cloud seeding. This article presents research highlights and progress toward achieving the goals of the program, along with the challenges associated with conducting cloud seeding research experiments
As a response to extreme water shortages in southeast Queensland, Australia, brought about by reduced rainfall and increasing population, the Queensland government decided to explore the potential for cloud seeding to enhance rainfall. The Queensland Cloud Seeding Research Program (QCSRP) was conducted in the southeast Queensland region near Brisbane during the 2008/09 wet seasons. In addition to conducting an initial exploratory, randomized (statistical) cloud seeding study, multiparameter radar measurements and in situ aircraft microphysical data were collected. This comprehensive set of observational platforms was designed to improve the physical understanding of the effects of both ambient aerosols and seeding material on precipitation formation in southeast Queensland clouds. This focus on gaining physical understanding, along with the unique combination of modern observational platforms utilized in the program, set it apart from previous cloud seeding research programs. The overarching goals of the QCSRP were to 1) determine the characteristics of local cloud systems (i.e., weather and climate), 2) document the properties of atmospheric aerosol and their microphysical effects on precipitation formation, and 3) assess the impact of cloud seeding on cloud microphysical and dynamical processes to enhance rainfall. During the course of the program, it became clear that there is great variability in the natural cloud systems in the southeast Queensland region, and understanding that variability would be necessary before any conclusions could be made regarding the impact of cloud seeding. This article presents research highlights and progress toward achieving the goals of the program, along with the challenges associated with conducting cloud seeding research experiments