Search Results
You are looking at 21 - 23 of 23 items for
- Author or Editor: Shoichi Shige x
- Refine by Access: All Content x
Abstract
The authors improve the high-resolution Global Satellite Mapping of Precipitation (GSMaP) product for Typhoon Morakot (2009) over Taiwan by using an orographic/nonorographic rainfall classification scheme. For the estimation of the orographically forced upward motion used in the orographic/nonorographic rainfall classification scheme, the optimal horizontal length scale for averaging the elevation data is examined and found to be about 50 km. It is inferred that as the air ascends en masse on the horizontal scale, it becomes unstable and convection develops. The orographic/nonorographic rainfall classification scheme is extended to the GSMaP algorithm for all passive microwave radiometers in orbit, including not just microwave imagers but also microwave sounders. The retrieved rainfall rates, together with infrared images, are used for the high-resolution rainfall products, which leads to much better agreement with rain gauge observations.
Abstract
The authors improve the high-resolution Global Satellite Mapping of Precipitation (GSMaP) product for Typhoon Morakot (2009) over Taiwan by using an orographic/nonorographic rainfall classification scheme. For the estimation of the orographically forced upward motion used in the orographic/nonorographic rainfall classification scheme, the optimal horizontal length scale for averaging the elevation data is examined and found to be about 50 km. It is inferred that as the air ascends en masse on the horizontal scale, it becomes unstable and convection develops. The orographic/nonorographic rainfall classification scheme is extended to the GSMaP algorithm for all passive microwave radiometers in orbit, including not just microwave imagers but also microwave sounders. The retrieved rainfall rates, together with infrared images, are used for the high-resolution rainfall products, which leads to much better agreement with rain gauge observations.
Abstract
The spectral latent heating (SLH) algorithm was developed to estimate latent heating profiles for the Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR). The method uses TRMM PR information (precipitation-top height, precipitation rates at the surface and melting level, and rain type) to select heating profiles from lookup tables (LUTs). LUTs for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were derived from numerical simulations of tropical cloud systems from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) using a cloud-resolving model (CRM).
The two-dimensional (2D) CRM was used in previous studies. The availability of exponentially increasing computer capabilities has resulted in three-dimensional (3D) CRM simulations for multiday periods becoming increasingly prevalent. In this study, LUTs from the 2D and 3D simulations are compared. Using the LUTs from 3D simulations results in less agreement between the SLH-retrieved heating and sounding-based heating for the South China Sea Monsoon Experiment (SCSMEX). The level of SLH-estimated maximum heating is lower than that of the sounding-derived maximum heating. This is explained by the fact that using the 3D LUTs results in stronger convective heating and weaker stratiform heating above the melting level than is the case if using the 2D LUTs. More condensate is generated in and carried from the convective region in the 3D model than in the 2D model, and less condensate is produced by the stratiform region’s own upward motion.
Abstract
The spectral latent heating (SLH) algorithm was developed to estimate latent heating profiles for the Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR). The method uses TRMM PR information (precipitation-top height, precipitation rates at the surface and melting level, and rain type) to select heating profiles from lookup tables (LUTs). LUTs for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were derived from numerical simulations of tropical cloud systems from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) using a cloud-resolving model (CRM).
The two-dimensional (2D) CRM was used in previous studies. The availability of exponentially increasing computer capabilities has resulted in three-dimensional (3D) CRM simulations for multiday periods becoming increasingly prevalent. In this study, LUTs from the 2D and 3D simulations are compared. Using the LUTs from 3D simulations results in less agreement between the SLH-retrieved heating and sounding-based heating for the South China Sea Monsoon Experiment (SCSMEX). The level of SLH-estimated maximum heating is lower than that of the sounding-derived maximum heating. This is explained by the fact that using the 3D LUTs results in stronger convective heating and weaker stratiform heating above the melting level than is the case if using the 2D LUTs. More condensate is generated in and carried from the convective region in the 3D model than in the 2D model, and less condensate is produced by the stratiform region’s own upward motion.
Abstract
Capitalizing on recently released reanalysis datasets and diabatic heating estimates based on Tropical Rainfall Measuring Mission (TRMM), the authors have conducted a composite analysis of vertical anomalous heating structures associated with the Madden–Julian oscillation (MJO). Because diabatic heating lies at the heart of prevailing MJO theories, the intention of this effort is to provide new insights into the fundamental physics of the MJO. However, some discrepancies in the composite vertical MJO heating profiles are noted among the datasets, particularly between three reanalyses and three TRMM estimates. A westward tilting with altitude in the vertical heating structure of the MJO is clearly evident during its eastward propagation based on three reanalysis datasets, which is particularly pronounced when the MJO migrates from the equatorial eastern Indian Ocean (EEIO) to the western Pacific (WP). In contrast, this vertical tilt in heating structure is not readily seen in the three TRMM products. Moreover, a transition from a shallow to deep heating structure associated with the MJO is clearly evident in a pressure–time plot over both the EEIO and WP in three reanalysis datasets. Although this vertical heating structure transition is detectable over the WP in two TRMM products, it is weakly defined in another dataset over the WP and in all three TRMM datasets over the EEIO.
The vertical structures of radiative heating QR associated with the MJO are also analyzed based on TRMM and two reanalysis datasets. A westward vertical tilt in QR is apparent in all these datasets: that is, the low-level QR is largely in phase of convection, whereas QR in the upper troposphere lags the maximum convection. The results also suggest a potentially important role of radiative heating for the MJO, particularly over the Indian Ocean. Caveats in heating estimates based on both the reanalysis datasets and TRMM are briefly discussed.
Abstract
Capitalizing on recently released reanalysis datasets and diabatic heating estimates based on Tropical Rainfall Measuring Mission (TRMM), the authors have conducted a composite analysis of vertical anomalous heating structures associated with the Madden–Julian oscillation (MJO). Because diabatic heating lies at the heart of prevailing MJO theories, the intention of this effort is to provide new insights into the fundamental physics of the MJO. However, some discrepancies in the composite vertical MJO heating profiles are noted among the datasets, particularly between three reanalyses and three TRMM estimates. A westward tilting with altitude in the vertical heating structure of the MJO is clearly evident during its eastward propagation based on three reanalysis datasets, which is particularly pronounced when the MJO migrates from the equatorial eastern Indian Ocean (EEIO) to the western Pacific (WP). In contrast, this vertical tilt in heating structure is not readily seen in the three TRMM products. Moreover, a transition from a shallow to deep heating structure associated with the MJO is clearly evident in a pressure–time plot over both the EEIO and WP in three reanalysis datasets. Although this vertical heating structure transition is detectable over the WP in two TRMM products, it is weakly defined in another dataset over the WP and in all three TRMM datasets over the EEIO.
The vertical structures of radiative heating QR associated with the MJO are also analyzed based on TRMM and two reanalysis datasets. A westward vertical tilt in QR is apparent in all these datasets: that is, the low-level QR is largely in phase of convection, whereas QR in the upper troposphere lags the maximum convection. The results also suggest a potentially important role of radiative heating for the MJO, particularly over the Indian Ocean. Caveats in heating estimates based on both the reanalysis datasets and TRMM are briefly discussed.