Search Results

You are looking at 21 - 30 of 60 items for

  • Author or Editor: Sumant Nigam x
  • Refine by Access: All Content x
Clear All Modify Search
Agniv Sengupta
and
Sumant Nigam

Abstract

The northeast monsoon (NEM) brings the bulk of annual rainfall to southeastern peninsular India, Sri Lanka, and the neighboring Southeast Asian countries. This October–December monsoon is referred to as the winter monsoon in this region. In contrast, the southwest summer monsoon brings bountiful rainfall to the Indo-Gangetic Plain. The winter monsoon region is objectively demarcated from analysis of the timing of peak monthly rainfall. Because of the region’s complex terrain, in situ precipitation datasets are assessed using high-spatiotemporal-resolution Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, prior to their use in monsoon evolution, variability, and trend analyses. The Global Precipitation Climatology Center’s in situ analysis showed the least bias from TRMM.

El Niño–Southern Oscillation’s (ENSO) impact on NEM rainfall is shown to be significant, leading to stronger NEM rainfall over southeastern peninsular India and Sri Lanka but diminished rainfall over Thailand, Vietnam, and the Philippines. The impact varies subseasonally, being weak in October and strong in November. The positive anomalies over peninsular India are generated by anomalous anticyclonic flow centered over the Bay of Bengal, which is forced by an El Niño–related reduction in deep convection over the Maritime Continent.

The historical twentieth-century climate simulations informing the Intergovernmental Panel on Climate Change’s Fifth Assessment (IPCC-AR5) show varied deficiencies in the NEM rainfall distribution and a markedly weaker (and often unrealistic) ENSO–NEM rainfall relationship.

Full access
Sumant Nigam
and
Yi Chao

Abstract

The structure of ocean-atmosphere annual cycle variability is extracted from the revised Comprehensive Ocean-Atmosphere Data Set SSTs, surface winds, and the latent heat (LH) and net shortwave (SW) surface fluxes using the covariance-based rotated principal component analysis method.

The coupled annual cycle variability is concisely described using two modes that are in temporal quadrature. The first, peaking in June/July (and Dec/Jan), represents monsoonal flow onto Indochina, Central America, and western Africa. The second mode peaks in September/October and March/April when it represents the extreme phases of the SST annual cycle in the eastern oceans.

Analysis of the surface momentum balance in the Pacific cold tongue core shows the equatorial flow, and in particular the zonal wind, to be dynamically consistent with the SST gradient during both the cold tongue's nascent (Jun/Jul) and mature (Sep/Oct) phases; the dynamical consistency improves when the impact of near-surface static stability variation on horizontal momentum dissipation is also considered. Evolution structure of the extracted annual cycle, moreover, shows the easterly wind tendency to lead SST cooling in the off-coastal zone. Taken together, these findings suggest that the Pacific cold tongue westward expansion results from local interaction of the zonal wind and zonal SST gradient, as encapsulated in the proposed “westward expansion hypothesis” -a simple analytic model of which is also presented.

Although positive LH flux tendency leads SST cooling in the off-coastal zone, its modest magnitude (∼5 W m−2/mo) indicates that its direct impact on SSTs, while additive, is secondary to the impact of equatorial upwelling. Comparison of the open ocean and coastal annual evolutions reveals that the northward expansion of the Pacific cold tongue likely results from the positive feedback between coastal meridional winds and the upwelled meridional SST gradient, but suggests that the reason for the nonobservance of equatorially antisymmetric SSTs is the counter LH-flux impact northward of the equator.

The comparatively modest SST annual cycle in the northern equatorial Indian Ocean is forced by the Asian-monsoon-driven (i.e., nonlocally forced) surface winds through coastal upwelling along the Somali coast and from the monsoon-cloudiness-impacted net SW surface flux and wind-speed-influenced LH flux in the off-coastal sector.

Full access
Sumant Nigam
and
Alfredo Ruiz-Barradas

Abstract

The monotony of seasonal variability is often compensated by the complexity of its spatial structure—the case in North American hydroclimate. The structure of hydroclimate variability is analyzed to provide insights into the functioning of the climate system and climate models.

The consistency of hydroclimate representation in two global [40-yr ECMWF Re-Analysis (ERA-40) and NCEP] and one regional [North American Regional Reanalysis (NARR)] reanalysis is examined first, from analysis of precipitation, evaporation, surface air temperature (SAT), and moisture flux distributions. The intercomparisons benchmark the recently released NARR data and provide context for evaluation of the simulation potential of two state-of-the-art atmospheric models [NCAR's Community Atmospheric Model (CAM3.0) and NASA's Seasonal-to-Interannual Prediction Project (NSIPP) atmospheric model].

Intercomparisons paint a gloomy picture: great divergence in global reanalysis representations of precipitation, with the eastern United States being drier in ERA-40 and wetter in NCEP in the annual mean by up to a third in each case; model averages are like ERA-40. The annual means, in fact, mask even larger but offsetting seasonal departures.

Analysis of moisture transport shows winter fluxes to be more consistently represented. Summer flux convergence over the Gulf Coast and Great Plains, however, differs considerably between global and regional reanalyses. Flux distributions help in understanding the choice of rainy season, especially the winter one in the Pacific Northwest; stationary fluxes are key.

Land–ocean competition for convection is too intense in the models—so much so that the oceanic ITCZ in July is southward of its winter position in the both simulations! The overresponsiveness of land is also manifest in SAT; the winter-to-summer change over the Great Plains is 5–9 K larger than in observations, with implications for modeling of climate sensitivity.

The nature of atmospheric water balance over the Great Plains is probed, despite unbalanced moisture budgets in reanalyses and model simulations. The imbalance is smaller in NARR but still unacceptably large, resulting from excessive evaporation in spring and summer. Adjusting evaporation during precipitation assimilation could lead to a more balanced budget.

Global and regional reanalysis will remain of limited use for hydroclimate studies until they comply with the operative water and energy balance constraints.

Full access
Scott J. Weaver
and
Sumant Nigam

Abstract

Variability of the Great Plains low-level jet (GPLLJ) is analyzed from the perspective of larger-scale, lower-frequency influences and regional hydroclimate impacts as opposed to the usual analysis of its frequency, diurnal variability, and mesoscale structure. The circulation-centric core analysis is conducted with monthly data from the high spatiotemporal resolution, precipitation-assimilating North American Regional Reanalysis, and the 40-yr ECMWF Re-Analysis (ERA-40) (as necessary) to identify the recurrent patterns of GPLLJ variability and their large-scale circulation links. The links are first investigated from regressions of an index representing meridional wind speed in the climatological jet-core region; the core region itself is defined from analysis of seasonal and diurnal variability of the jet structure and moisture fluxes.

The analysis reveals that GPLLJ variability is, indeed, linked to coherent, large-scale, upper-level height patterns over the Pacific and North Atlantic Oscillation (NAO) variability in the Atlantic. A Rossby wave source analysis shows the Pacific height pattern to be potentially linked to tropical diabatic heating anomalies in the west-central basin and in the eastern Pacific sector. EOF analysis of GPLLJ variability shows it to be composed of three modes that, together, account for ∼75% of the variance. The modes represent the strengthening/expansion of the jet core (38%), with a strong precipitation impact on the northern Great Plains, and linked to post-peak-phase ENSO variability; meridional shift of the GPLLJ (23%), with a Gulf states precipitation focus, and linked to pre-peak-phase ENSO variability; and in-place strengthening of the GPLLJ (12%), with dipolar influence on Great Plains and Gulf states precipitation, and linked to summer NAO variability.

Full access
Megan E. Linkin
and
Sumant Nigam

Abstract

The North Pacific Oscillation (NPO) in sea level pressure and its upper-air geopotential height signature, the west Pacific (WP) teleconnection pattern, constitute a prominent mode of winter midlatitude variability, the NPO/WP. Its mature-phase expression is identified from principal component analysis of monthly sea level pressure variability as the second leading mode just behind the Pacific–North American variability pattern.

NPO/WP variability, primarily on subseasonal time scales, is characterized by a large-scale meridional dipole in SLP and geopotential height over the Pacific and is linked to meridional movements of the Asian–Pacific jet and Pacific storm track modulation. The hemispheric height anomalies at upper levels resemble the climatological stationary wave pattern attributed to transient eddy forcing. The NPO/WP divergent circulation is thermal wind restoring, pointing to independent forcing of jet fluctuations.

Intercomparison of sea level pressure, geopotential height, and zonal wind anomaly structure reveals that NPO/WP is a basin analog of the NAO, which is not surprising given strong links to storm track variability in both cases.

The NPO/WP variability is influential: its impact on Alaskan, Pacific Northwest, Canadian, and U.S. winter surface air temperatures is substantial—more than that of PNA or ENSO. It is likewise more influential on the Pacific Northwest, western Mexico, and south-central Great Plains winter precipitation.

Finally, and perhaps, most importantly, NPO/WP is strongly linked to marginal ice zone variability of the Arctic seas with an influence that surpasses that of other Pacific modes. Although NPO/WP variability and impacts have not been as extensively analyzed as its Pacific cousins (PNA, ENSO), it is shown to be more consequential for Arctic sea ice and North American winter hydroclimate.

Full access
Steven C. Chan
and
Sumant Nigam

Abstract

Diabatic heating is diagnosed from the 40-yr ECMWF Re-Analysis (ERA-40) circulation as a residue in the thermodynamic equation. The heating distribution is compared with the heating structure diagnosed from NCEP and 15-yr ECMWF Re-Analysis (ERA-15) circulation and latent heating generated from Tropical Rainfall Measuring Mission (TRMM) observations using the convective–stratiform heating (CSH) algorithm.

The ERA-40 residual heating in the tropics is found to be stronger than NCEP’s (and ERA-15), especially in July when its zonal–vertical average is twice as large. The bias is strongest over the Maritime Continent in January and over the eastern basins and Africa in July. Comparisons with precipitation indicate ERA-40 heating to be much more realistic over the eastern Pacific but excessive over the Maritime Continent, by at least 20% in January.

Intercomparison of precipitation estimates from heating-profile integrals and station and satellite analyses reveals the TRMM CSH latent heating to be chronically weak by as much as a factor of 2! It is the low-side outlier among nine precipitation estimates in three of the four analyzed regions. No less worrisome is the inconsistency between the integral of the CSH latent heating profile in the tropics and the TRMM precipitation retrievals constraining the CSH algorithm (e.g., the 3A25 analysis).

Confronting TRMM’s diagnosis of latent heating from local rainfall retrievals and local cumulus-model heating profiles with heating based on the large-scale assimilated circulation is a defining attribute of this study.

Full access
Sumant Nigam
,
Chul Chung
, and
Eric DeWeaver

Abstract

Diabatic heating associated with El Niño–Southern Oscillation (ENSO) variability is residually diagnosed from the European Centre for Medium-Range Forecasts (ECMWF) and National Centers for Environmental Prediction (NCEP)–National Center for Atmospheric Research (NCAR) atmospheric reanalysis datasets during the overlapping 1979–93 period. Quantitative characterization of the horizontal and vertical structure of ENSO heating anomalies, including estimates of uncertainty, provides observationally constrained validation targets for GCM physical parameterizations.

The diagnosed ENSO heating anomalies have similar horizontal structure, but the vertically averaged ECMWF heating is stronger and in better agreement with the Xie–Arkin precipitation anomalies, particularly with respect to precipitation reduction over the western tropical Pacific. Comparison of heating vertical structures in the central equatorial Pacific shows ECMWF heating to be considerably stronger in the lower troposphere, where it exhibits a local maximum.

The ENSO covariant tropospheric temperature in the two reanalyses was also examined along the equator and found to have an intriguing vertical structure, with sizeable amplitude in the lower and upper troposphere and vanishing amplitude in between. The largest temperature anomalies in the lower troposphere are at the surface, and the ECMWF one is about 50% stronger.

The three-dimensional heating anomalies diagnosed from the reanalyses are used to evaluate the ENSO heating distribution produced by NCAR’s Community Climate Model, version 3 (CCM3) atmospheric GCM, when integrated in a climate simulation mode. At least, in context of ENSO variability, the differences in ECMWF and NCEP heating anomalies are small in comparison with CCM3’s heating departures from either of these anomalies, allowing characterization of the CCM3’s ENSO heating structure: horizontally, as a more meridional redistribution (“Hadley-like”), and vertically, as a substantially “bottom-heavy” profile, relative to the reanalyses anomalies.

In a companion paper, deficiencies in the simulated ENSO surface winds are related to specific features of the CCM3’s heating error, from diagnostic modeling.

Full access
Scott J. Weaver
and
Sumant Nigam

Abstract

The evolution of supersynoptic (i.e., pentad) Great Plains low-level jet (GPLLJ) variability, its precipitation impacts, and large-scale circulation context are analyzed in the North American Regional Reanalysis (NARR)—a high-resolution precipitation-assimilating dataset—and the NCEP–NCAR reanalysis. The analysis strategy leans on the extended EOF technique, which targets both spatial and temporal recurrence of a variability episode.

Pentad GPLLJ variability structures are found to be spatially similar to those in the monthly analysis. The temporal evolution of the supersynoptic GPLLJ-induced precipitation anomalies reveal interesting lead and lag relationships highlighted by GPLLJ variability-leading precipitation anomalies. Interestingly, similar temporal phasing of the GPLLJ and precipitation anomalies were operative during the 1993 (1988) floods (drought) over the Great Plains, indicating the importance of these submonthly GPLLJ variability modes in the instigation of extreme hydroclimatic episodes. The northward-shifted (dry) GPLLJ variability mode is linked to large-scale circulation variations emanating from remote regions that are modified by interaction with the Rocky Mountains, suggesting that the supersynoptic GPLLJ fluctuations may have their origin in orographic modulation of baroclinic development.

Full access
Alfredo Ruiz-Barradas
and
Sumant Nigam

Abstract

The Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site data are analyzed to provide insight into atmosphere–land surface interactions generating summertime precipitation variability. Pentad-averaged (5 days) data are analyzed; the average is long enough to suppress synoptic variability but sufficiently short to resolve atmosphere–land surface interactions. Intercomparison with the precipitation-assimilating North American Regional Reanalysis (NARR) helps with in-depth investigation of the processes. The analysis seeks to ascertain the process sequence, especially the role of evapotranspiration and soil-moisture–radiation feedbacks in the generation of regional precipitation variability at this temporal scale.

Transported moisture dominates over evapotranspiration in precipitation variability over the region, from both magnitude of the contribution to regional water balance and its apparent temporal lead at pentad resolution. Antecedent and contemporaneous evapotranspiration are found to be negatively correlated with precipitation, albeit statistically insignificant; only lagging correlations are positive, peaking at 2-pentad lag following precipitation, substantiating the authors’ characterization of the water balance over SGP, and extending the authors’ previous findings on the dominance of moisture flux convergence in generating precipitation variability at monthly scales.

Precipitation episodes are linked with net negative surface radiation anomalies (i.e., with an energy-deprived land surface state that cannot fuel evapotranspiration), ruling out radiatively driven positive feedback on precipitation. Although the net longwave signal is positive because of a colder land surface (less upward terrestrial radiation), it is more than offset by the cloudiness-related reduction in downward shortwave radiation. Thus, ARM (NARR) data do not support the soil-moisture–precipitation feedback hypothesis over the SGP at pentad time scales; however, it may work at subpentad resolution and over other regions.

Full access
Alfredo Ruiz-Barradas
and
Sumant Nigam

Abstract

The present work assesses spring and summer precipitation over North America as well as summer precipitation variability over the central United States and its SST links in simulations of the twentieth-century climate and projections of the twenty-first- and twenty-second-century climates for the A1B scenario.

The observed spatial structure of spring and summer precipitation poses a challenge for models, particularly over the western and central United States. Tendencies in spring precipitation in the twenty-first century agree with the observed ones at the end of the twentieth century over a wetter north-central and a drier southwestern United States, and a drier southeastern Mexico. Projected wetter springs over the Great Plains in the twenty-first and twenty-second centuries are associated with an increase in the number of extreme springs. In contrast, projected summer tendencies have demonstrated little consistency. The associated observed changes in SSTs bear the global warming footprint, which is not well captured in the twentieth-century climate simulations.

Precipitation variability over the Great Plains presents a coherent picture in spring but not in summer. Models project an increase in springtime precipitation variability owing to an increased number of extreme springs. The number of extreme droughty (pluvial) events during the spring–fall part of the year is under(over)estimated in the twentieth century without consistent projections.

Summer precipitation variability over the Great Plains is linked to SSTs over the Pacific and Atlantic Oceans, with no apparent ENSO link in spite of the exaggerated variability in the equatorial Pacific in climate simulations; this has been identified already in observations and atmospheric models forced with historical SSTs. This link is concealed due to the increased warming in the twenty-first century. Deficiencies in land surface–atmosphere interactions and global teleconnections in the climate models prevent them from a better portrayal of summer precipitation variability in the central United States.

Full access