Search Results

You are looking at 21 - 26 of 26 items for

  • Author or Editor: Timothy M. Merlis x
  • Refine by Access: All Content x
Clear All Modify Search
Timothy M. Merlis
,
Isaac M. Held
,
Georgiy L. Stenchikov
,
Fanrong Zeng
, and
Larry W. Horowitz

Abstract

Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1% yr−1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%–15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure.

The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

Full access
Andrew P. Ballinger
,
Timothy M. Merlis
,
Isaac M. Held
, and
Ming Zhao

Abstract

The sensitivity of global tropical cyclone (TC) activity to changes in a zonally symmetric sea surface temperature (SST) distribution and the associated large-scale atmospheric circulation are investigated. High-resolution (~50-km horizontal grid spacing) atmospheric general circulation model simulations with maximum SST away from the equator are presented. Simulations with both fixed-SST and slab ocean lower boundary conditions are compared.

The simulated TCs that form on the poleward flank of the intertropical convergence zone (ITCZ) are tracked and changes in the frequency and intensity of those storms are analyzed between the different experiments. The total accumulated cyclone energy (ACE) increases as the location of the maximum SST shifts farther away from the equator. The location of the ITCZ also shifts in conjunction with changes to the SST profile, and this plays an important role in mediating the frequency and intensity of the TCs that form within this modeling framework.

Full access
Matthew Henry
,
Timothy M. Merlis
,
Nicholas J. Lutsko
, and
Brian E. J. Rose

Abstract

The precise mechanisms driving Arctic amplification are still under debate. Previous attribution methods compute the vertically uniform temperature change required to balance the top-of-atmosphere energy imbalance caused by each forcing and feedback, with any departures from vertically uniform warming collected into the lapse-rate feedback. We propose an alternative attribution method using a single-column model that accounts for the forcing dependence of high-latitude lapse-rate changes. We examine this method in an idealized general circulation model (GCM), finding that, even though the column-integrated carbon dioxide (CO2) forcing and water vapor feedback are stronger in the tropics, they contribute to polar-amplified surface warming as they produce bottom-heavy warming in high latitudes. A separation of atmospheric temperature changes into local and remote contributors shows that, in the absence of polar surface forcing (e.g., sea ice retreat), changes in energy transport are primarily responsible for the polar-amplified pattern of warming. The addition of surface forcing substantially increases polar surface warming and reduces the contribution of atmospheric dry static energy transport to the warming. This physically based attribution method can be applied to comprehensive GCMs to provide a clearer view of the mechanisms behind Arctic amplification.

Full access
Anne-Sophie Fortin
,
Carolina O. Dufour
,
Timothy M. Merlis
, and
Rym Msadek

Abstract

The pattern and magnitude of the Atlantic meridional overturning circulation (AMOC) in response to an increase in atmospheric carbon dioxide (CO2) concentration greatly differ across climate models in particular due to differences in the representation of oceanic processes. Here, we investigate the response of the AMOC to an idealized climate change scenario, along with the drivers of this response, in the three configurations of a coupled climate model suite with varying resolutions in the ocean (1°, 0.25°, 0.10°). In response to the CO2 increase, the AMOC shows a reduction of similar magnitude in the low and high resolutions, while a muted response is found in the medium resolution. A decomposition of the AMOC into its geostrophic and residual components reveals that most of the AMOC reduction is due to a weakening of the geostrophic streamfunction driven by temperature anomalies, partly opposed by a strengthening of the geostrophic streamfunction driven by salinity anomalies. Changes in the AMOC due to the mesoscale eddy streamfunction contribute to 13% and 17% of the AMOC decline in the low and high resolutions, respectively, but induce very little change in the medium resolution. The similar response of the AMOC strength in the low and high resolutions hides important differences in the contribution and pattern of the geostrophic and eddy streamfunctions. The lack of sensitivity of the medium resolution to the CO2 forcing is due to a weak connection between the deep water formation regions in the northern subpolar gyre and the Deep Western Boundary Current.

Significance Statement

The Atlantic meridional overturning circulation (AMOC) is a major system of ocean currents in the Atlantic that contributes to shaping the climate at regional and global scales, notably through the transport of heat from the low to the high latitudes. A major slowdown of the AMOC over the twenty-first century is predicted by current climate models in response to increasing greenhouse gases. Yet, the magnitude and timing of this slowdown are uncertain. The purpose of this study is to investigate the expected weakening of the AMOC using state-of-the-art numerical climate models that include higher resolutions than typically used in climate change assessments. Our results provide insights into the mechanisms driving the weakening of the AMOC and into differences arising from model resolutions.

Free access
Spencer A. Hill
,
Natalie J. Burls
,
Alexey Fedorov
, and
Timothy M. Merlis

Abstract

CO2-forced surface warming in general circulation models (GCMs) is initially polar amplified in the Arctic but not in the Antarctic—a largely hemispherically antisymmetric signal. Nevertheless, we show in CESM1 and 11 LongRunMIP GCMs that the hemispherically symmetric component of global-mean-normalized, zonal-mean warming ( T sym * ) under 4 × CO2 changes weakly or becomes modestly more polar amplified from the first decade to near-equilibrium. Conversely, the antisymmetric warming component ( T asym * ) weakens with time in all models, modestly in some including FAMOUS, but effectively vanishing in others including CESM1. We explore mechanisms underlying the robust T sym * behavior with a diffusive moist energy balance model (MEBM), which given radiative feedback parameter (λ) and ocean heat uptake ( O ) fields diagnosed from CESM1 adequately reproduces the CESM1 T sym * and T asym * fields. In further MEBM simulations perturbing λ and O , T sym * is sensitive to their symmetric components only, and more to that of λ. A three-box, two-time-scale model fitted to FAMOUS and CESM1 reveals a curiously short Antarctic fast-response time scale in FAMOUS. In additional CESM1 simulations spanning a broader range of forcings, T sym * changes modestly across 2–16 × CO2, and T sym * in a Pliocene-like simulation is more polar amplified but likewise approximately time invariant. Determining the real-world relevance of these behaviors—which imply that a surprising amount of information about near-equilibrium polar amplification emerges within decades—merits further study.

Free access
Ying Li
,
David W. J. Thompson
,
Sandrine Bony
, and
Timothy M. Merlis

Abstract

Extratropical eddy-driven jets are predicted to shift poleward in a warmer climate. Recent studies have suggested that cloud radiative effects (CRE) may enhance the amplitude of such shifts. But there is still considerable uncertainty about the underlying mechanisms, whereby CRE govern the jet response to climate change. This study provides new insights into the role of CRE in the jet response to climate change by exploiting the output from six global warming simulations run with and without atmospheric CRE (ACRE). Consistent with previous studies, it is found that the magnitude of the jet shift under climate change is substantially increased in simulations run with ACRE. It is hypothesized that ACRE enhance the jet response to climate change by increasing the upper-tropospheric baroclinicity due to the radiative effects of rising high clouds. The lifting of the tropopause and high clouds in response to surface warming arises from the thermodynamic constraints placed on water vapor concentrations. Hence, the influence of ACRE on the jet shift in climate change simulations may be viewed as an additional “robust” thermodynamic constraint placed on climate change by the Clausius–Clapeyron relation. The hypothesis is tested in simulations run with an idealized dry GCM, in which the model is perturbed with a thermal forcing that resembles the ACRE response to surface warming. It is demonstrated that 1) the enhanced jet shifts found in climate change simulations run with ACRE are consistent with the atmospheric response to the radiative warming associated with rising high clouds, and 2) the amplitude of the jet shift scales linearly with the amplitude of the ACRE forcing.

Full access