Search Results

You are looking at 21 - 30 of 33 items for

  • Author or Editor: Wayne Higgins x
  • Refine by Access: All Content x
Clear All Modify Search
Charles Jones, Leila M. V. Carvalho, R. Wayne Higgins, Duane E. Waliser, and J-K. E. Schemm

Abstract

Tropical intraseasonal convective anomalies (TICAs) play a significant role in the coupled ocean–atmosphere system and the Madden–Julian oscillation (MJO) is the primary mode of this variability. This study describes statistical forecast models of intraseasonal variations. Twenty-four years of outgoing longwave radiation (OLR) and zonal components of the wind at 200 (U200) and 850 hPa (U850) are used. The models use the principal components (PCs) of combined EOF analysis of 20–90-day anomalies of OLR, U200, and U850 data. Forecast models are developed for each lead time from 1 to 10 pentads and for winter and summer seasons separately. The forecast models use a combination of the five most recent pentad values of the first five PCs of the combined EOF of (OLR, U200, U850) to predict the future values of a given PCK (k = 1, 5). The spatial structures are obtained by reconstructing the fields of OLR, U200, and U850 using the forecasts of PCK (k = 1, 5) and the associated EOFs. Verification with independent winter and summer data indicates useful forecasts of the first five PCs extending up to five pentads of lead time. The verification against 20–90-day anomalies indicates useful forecasts of the reconstructed fields of OLR, U200, and U850 extending up to four pentads of lead time over most of the Tropics. Furthermore, the statistical models provide useful forecasts of U200 and U850 intraseasonal anomalies up to two to three pentads of lead times in portions of the North Pacific region.

Full access
Charles Jones, Leila M. V. Carvalho, R. Wayne Higgins, Duane E. Waliser, and J-K. E. Schemm

Abstract

Tropical intraseasonal convective anomalies (TICA) have a central role in subseasonal changes in the coupled ocean–atmosphere system, but the climatology of TICA events has not been properly documented. This study exploits 24 years of outgoing longwave radiation (OLR) data and a tracking algorithm to develop a climatology of eastward propagating TICA events. Three distinct types of TICA occurrences are documented according to their propagation characteristics. The first type (IND) is characterized by events that propagate in the Indian Ocean without significant influence in the western Pacific Ocean. The second and third types are associated with occurrences of the Madden–Julian oscillation during boreal winters (MJO) and summers (ISO). The frequency of occurrence of TICA events is highest in April–June and October–December and lowest in July–September. An analysis of the spatial and temporal characteristics reveals that MJO events tend to have the longest life cycle, greatest intensity, and largest variability inside the contiguous region of OLR anomaly. Given the data record of 24 years, the analysis of interannual occurrences of TICA events does not show statistically significant differences among events that occur in different phases of the El Niño–Southern Oscillation (ENSO). A procedure is developed to identify major MJO events and estimate their frequency of occurrence in the data record.

Full access
Kingtse C. Mo, Jae-Kyung Schemm, H. M. H. Juang, R. Wayne Higgins, and Yucheng Song

Abstract

Summer seasonal simulations for selected years were performed using the NCEP Global Forecast System (GFS) at high (T126L28) and low (T62L28) resolutions, and the NCEP 80-km regional spectral model (RSM) nested in the T62 model outputs (RSM80/T62). All models have 28 levels in the vertical. All experiments were performed with prescribed observed sea surface temperatures to ensure that simulation errors came from model deficiencies. While the T126L28 model does not have a statistically significant advantage in simulating 500-hPa height anomalies over the Pacific–North American domain, it yields better monsoon precipitation forecasts and interannual variability. The T62L28 model simulations are too dry over the Southwest and northwestern Mexico when compared to observations and do not properly capture interannual variations of monsoon rainfall. The RSM80/T62 nesting improves the overall rainfall simulations somewhat but is not able to overcome deficiencies of the T62L28 global model to capture interannual variations in monsoon precipitation. Results indicate that a high-resolution version of the global model is needed for seasonal forecasts of monsoon precipitation.

Both models capture the low-level jet from the Great Plains (GPLLJ) and rainfall anomalies associated with the 1993 summer floods and the 1988 summer drought, although the simulated rainfall maxima are often weaker and shifted spatially when compared to observations. The impact of horizontal resolution is largely local and is limited to areas over the western region of North America. The T126 model is able to capture the low-level jet from the Gulf of California (GCLLJ), while the T62 model is too coarse to resolve the Gulf of California (GOC). Moisture surges along the GOC are not properly simulated by the T62 model. Overall, the T62 model simulates a very dry Southwest and a weaker monsoon.

Full access
Kingtse C. Mo, Muthuvel Chelliah, Marco L. Carrera, R. Wayne Higgins, and Wesley Ebisuzaki

Abstract

The large-scale atmospheric hydrologic cycle over the United States and Mexico derived from the 23-yr NCEP regional reanalysis (RR) was evaluated by comparing the RR products with satellite estimates, independent sounding data, and the operational Eta Model three-dimensional variational data assimilation (3DVAR) system (EDAS).

In general, the winter atmospheric transport and precipitation are realistic. The climatology and interannual variability of the Pacific, subtropical jet streams, and low-tropospheric moisture transport are well captured. During the summer season, the basic features and the evolution of the North American monsoon (NAM) revealed by the RR compare favorably with observations. The RR also captures the out-of-phase relationship of precipitation as well as the moisture flux convergence between the central United States and the Southwest. The RR is able to capture the zonal easterly Caribbean low-level jet (CALLJ) and the meridional southerly Great Plains low-level jet (GPLLJ). Together, they transport copious moisture from the Caribbean to the Gulf of Mexico and from the Gulf of Mexico to the Great Plains, respectively. The RR systematically overestimates the meridional southerly Gulf of California low-level jet (GCLLJ). A comparison with observations suggests that the meridional winds from the RR are too strong, with the largest differences centered over the northern Gulf of California. The strongest winds over the Gulf in the RR extend above 700 hPa, while the operational EDAS and station soundings indicate that the GCLLJ is confined to the boundary layer.

Full access
Song Yang, Yundi Jiang, Dawei Zheng, R. Wayne Higgins, Qin Zhang, Vernon E. Kousky, and Min Wen

Abstract

Variations of U.S. regional precipitation in both observations and free-run experiments with the NCEP Climate Forecast System (CFS) are investigated. The seasonality of precipitation over the continental United States and the time–frequency characteristics of precipitation over the Southwest (SW) are the focus. The differences in precipitation variation among different model resolutions are also analyzed.

The spatial distribution of U.S. precipitation is characterized by high values over the East and the West Coasts, especially over the Gulf Coast and southeast states, and low values elsewhere except over the SW in summer. A large annual cycle of precipitation occurs over the SW, northern plains, and the West Coast. Overall, the CFS captures the above features reasonably well, except for the SW. However, it overestimates the precipitation over the western United States, except the SW in summer, and underestimates the precipitation over the central South, except in springtime. It also overestimates (underestimates) the precipitation seasonality over the intermountain area and Gulf Coast states (SW, West Coast, and northern Midwest). The model using T126 resolution captures the observed features more realistically than at the lower T62 resolution over a large part of the United States.

The variability of observed SW precipitation is characterized by a large annual cycle, followed by a semiannual cycle, and the oscillating signals on annual, semiannual, and interannual time scales account for 41% of the total precipitation variability. However, the CFS, at both T62 and T126 resolution, fails in capturing the above feature. The variability of SW precipitation in the CFS is much less periodic. The annual oscillation of model precipitation is much weaker than that observed and it is even much weaker than the simulated semiannual oscillation. The weakly simulated annual cycle is attributed by the unrealistic precipitation simulations of all seasons, especially spring and summer. On the annual time scale, the CFS fails in simulating the relationship between the SW precipitation and the basinwide sea surface temperature (SST) and the overlying atmospheric circulation. On the semiannual time scale, the model exaggerates the response of the regional precipitation to the variations of SST and atmospheric circulation over the tropics and western Atlantic, including the Gulf of Mexico. This study also demonstrates a challenge for the next-generation CFS, at T126 resolution, to predict the variability of North American monsoon climate.

Full access
Viviane B. S. Silva, Vernon E. Kousky, Wei Shi, and R. Wayne Higgins

Abstract

A gauge-only precipitation data quality control and analysis system has been developed for monitoring precipitation at NOAA’s Climate Prediction Center (CPC). Over the past 10 yr the system has been used to develop and deliver many different precipitation products over the United States, Mexico, and Central and South America. Here the authors describe how the system has been applied to develop improved gridded daily precipitation analyses over Brazil. Consistent with previous studies, comparisons between the the gridded analyses and station observations reveal fewer dry days, a greater number of low precipitation days, and fewer extreme precipitation events in the gridded analyses. Even though the gridded analysis system reduces the number of dry days and increases the number of wet days, there is still a good correlation between time series of the gridpoint precipitation values and observations.

Retrospective analyses are important for computing basic statistics such as mean daily/monthly rainfall, extremes, and probabilities of wet and dry days. The CPC gridded precipitation analyses can be used in hydrologic and climate variability studies dealing with large spatial-scale anomaly patterns, such as those related to ENSO. The analyses can also be used as a benchmark for evaluating model simulations, serve as a basis for real-time monitoring, and provide statistics on the occurrence of large-scale heavy rainfall events and dry periods.

Full access
Song Yang, Zuqiang Zhang, Vernon E. Kousky, R. Wayne Higgins, Soo-Hyun Yoo, Jianyin Liang, and Yun Fan

Abstract

Analysis of the retrospective ensemble predictions (hindcasts) of the NCEP Climate Forecast System (CFS) indicates that the model successfully simulates many major features of the Asian summer monsoon including the climatology and interannual variability of major precipitation centers and atmospheric circulation systems. The model captures the onset of the monsoon better than the retreat of the monsoon, and it simulates the seasonal march of monsoon rainfall over Southeast Asia more realistically than that over South Asia. The CFS predicts the major dynamical monsoon indices and monsoon precipitation patterns several months in advance. It also depicts the interactive oceanic–atmospheric processes associated with the precipitation anomalies reasonably well at different time leads. Overall, the skill of monsoon prediction by the CFS mainly comes from the impact of El Niño–Southern Oscillation (ENSO).

The CFS produces weaker-than-observed large-scale monsoon circulation, due partially to the cold bias over the Asian continent. It tends to overemphasize the relationship between ENSO and the Asian monsoon, as well as the impact of ENSO on the Asian and Indo-Pacific climate. A higher-resolution version of the CFS (T126) captures the climatology and variability of the Asian monsoon more realistically than does the current resolution version (T62). The largest improvement occurs in the simulations of precipitation near the Tibetan Plateau and over the tropical Indian Ocean associated with the zonal dipole mode structure. The analysis suggests that NCEP’s next operational model may perform better in simulating and predicting the monsoon climate over Asia and the Indo-Pacific Oceans.

Full access
Kyong-Hwan Seo, Wanqiu Wang, Jon Gottschalck, Qin Zhang, Jae-Kyung E. Schemm, Wayne R. Higgins, and Arun Kumar

Abstract

This work examines the performance of Madden–Julian oscillation (MJO) forecasts from NCEP’s coupled and uncoupled general circulation models (GCMs) and statistical models. The forecast skill from these methods is evaluated in near–real time. Using a projection of El Niño–Southern Oscillation (ENSO)-removed variables onto the principal patterns of MJO convection and upper- and lower-level circulations, MJO-related signals in the dynamical model forecasts are extracted. The operational NCEP atmosphere–ocean fully coupled Climate Forecast System (CFS) model has useful skill (>0.5 correlation) out to ∼15 days when the initial MJO convection is located over the Indian Ocean. The skill of the CFS hindcast dataset for the period from 1995 to 2004 is nearly comparable to that from a lagged multiple linear regression model, which uses information from the previous five pentads of the leading two principal components (PCs). In contrast, the real-time analysis for the MJO forecast skill for the period from January 2005 to February 2006 using the lagged multiple linear regression model is reduced to ∼10–12 days. However, the operational CFS forecast for this period is skillful out to ∼17 days for the winter season, implying that the coupled dynamical forecast has some usefulness in predicting the MJO compared to the statistical model.

It is shown that the coupled CFS model consistently, but only slightly, outperforms the uncoupled atmospheric model (by one to two days), indicating that only limited improvement is gained from the inclusion of the coupled air–sea interaction in the MJO forecast in this model. This slight improvement may be the result of the existence of a propagation barrier around the Maritime Continent and the far western Pacific in the NCEP Global Forecast System (GFS) and CFS models, as shown in several previous studies. This work also suggests that the higher horizontal resolution and finer initial data might contribute to improving the forecast skill, presumably as a result of an enhanced representation of the Maritime Continent region.

Full access
Gerald D. Bell, Michael S. Halpert, Russell C. Schnell, R. Wayne Higgins, Jay Lawrimore, Vernon E. Kousky, Richard Tinker, Wasila Thiaw, Muthuvel Chelliah, and Anthony Artusa

The global climate during 1999 was impacted by Pacific cold episode (La Niña) conditions throughout the year, which resulted in regional precipitation and atmospheric circulation patterns across the Pacific Ocean and the Americas that are generally consistent with those observed during past cold episodes. The primary La Niña-related precipitation anomalies included 1) increased rainfall across Indonesia, and a nearly complete disappearance of rainfall across the east-central and eastern equatorial Pacific; 2) above-normal rains across northwestern and northern Australia; 3) increased monsoon rains across the Sahel region of western Africa; 4) above-average rains over southeastern Africa, 5) above-average rains over the Caribbean Sea and portions of Central America, and 6) below-average rains in southeastern South America.

The La Niña also contributed to persistent cyclonic circulation anomalies in the subtropics of both hemispheres, which flanked the area of suppressed convective activity over the eastern half of the equatorial Pacific. In the Northern Hemisphere this anomaly feature contributed to a pronounced westward retraction of the wintertime East Asian jet stream, which subsequently impacted precipitation and storm patterns across the eastern North Pacific and western North America. The La Niña-related pattern of tropical rainfall also contributed to a very persistent pattern of anticyclonic circulation anomalies in the middle latitude of both hemispheres, extending from the eastern Pacific across the Atlantic and Africa eastward to Australasia. This anomaly pattern was associated with an active Atlantic hurricane season, an inactive eastern North Pacific hurricane season, above-average rains in the African Sahel, and an overall amplification of the entire southeast Asian summer monsoon complex.

The active 1999 North Atlantic hurricane season featured 12 named storms, 8 of which became hurricanes, and 5 of which became intense hurricanes. The peak of activity during mid-August–October was accompanied by low vertical wind shear across the central and western Atlantic, along with both a favorable structure and location of the African easterly jet. In contrast, only 9 tropical storms formed over the eastern North Pacific during the year, making it one of the most inactive years for that region in the historical record. This relative inactivity was linked to a persistent pattern of high vertical wind shear that covered much of the main development region of the eastern North Pacific.

Other regional aspects of the short-term climate included: 1) above-average wintertime precipitation and increased storminess in the Pacific Northwest, United States; 2) above-average monsoonal rainfall across the southwestern United States; 3) drought over the northeastern quadrant of the United States during April–mid-August; 4) hurricane-related flooding in the Carolinas during September; 5) drought over the south-central United States during July–November; 6) below-average rainfall in the Hawaiian Islands throughout the year, with long-term dryness affecting some parts of the islands since October 1997; 7) a continuation of long-term drought conditions in southeastern Australia, with most of Victoria experiencing below-average rainfall since late 1996; and 8) above-average rainfall in central China during April–August.

Global annual mean surface temperatures during 1999 for land and marine areas were 0.41°C above the 1880–1998 long-term mean, making it the fifth warmest year in the record. However, significant cooling was evident in the Tropics during 1999 in association with a continuation of La Niña conditions. In contrast, temperatures in both the Northern Hemisphere and Southern Hemisphere extratropics were the second warmest in the historical record during 1999, and only slightly below the record 1998 anomalies.

The areal extent of the Antarctic ozone hole remained near record levels during 1999. The ozone hole also lasted longer than has been observed in past years.

Full access
Fedor Mesinger, Geoff DiMego, Eugenia Kalnay, Kenneth Mitchell, Perry C. Shafran, Wesley Ebisuzaki, Dušan Jović, Jack Woollen, Eric Rogers, Ernesto H. Berbery, Michael B. Ek, Yun Fan, Robert Grumbine, Wayne Higgins, Hong Li, Ying Lin, Geoff Manikin, David Parrish, and Wei Shi

In 1997, during the late stages of production of NCEP–NCAR Global Reanalysis (GR), exploration of a regional reanalysis project was suggested by the GR project's Advisory Committee, “particularly if the RDAS [Regional Data Assimilation System] is significantly better than the global reanalysis at capturing the regional hydrological cycle, the diurnal cycle and other important features of weather and climate variability.” Following a 6-yr development and production effort, NCEP's North American Regional Reanalysis (NARR) project was completed in 2004, and data are now available to the scientific community. Along with the use of the NCEP Eta model and its Data Assimilation System (at 32-km–45-layer resolution with 3-hourly output), the hallmarks of the NARR are the incorporation of hourly assimilation of precipitation, which leverages a comprehensive precipitation analysis effort, the use of a recent version of the Noah land surface model, and the use of numerous other datasets that are additional or improved compared to the GR. Following the practice applied to NCEP's GR, the 25-yr NARR retrospective production period (1979–2003) is augmented by the construction and daily execution of a system for near-real-time continuation of the NARR, known as the Regional Climate Data Assimilation System (R-CDAS). Highlights of the NARR results are presented: precipitation over the continental United States (CONUS), which is seen to be very near the ingested analyzed precipitation; fits of tropospheric temperatures and winds to rawinsonde observations; and fits of 2-m temperatures and 10-m winds to surface station observations. The aforementioned fits are compared to those of the NCEP–Department of Energy (DOE) Global Reanalysis (GR2). Not only have the expectations cited above been fully met, but very substantial improvements in the accuracy of temperatures and winds compared to that of GR2 are achieved throughout the troposphere. Finally, the numerous datasets produced are outlined and information is provided on the data archiving and present data availability.

Full access