Search Results

You are looking at 21 - 30 of 39 items for :

  • Author or Editor: Wei Wang x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Youbing Peng, Caiming Shen, Wei-Chyung Wang, and Ying Xu

Abstract

Studies of the effects of large volcanic eruptions on regional climate so far have focused mostly on temperature responses. Previous studies using proxy data suggested that coherent droughts over eastern China are associated with explosive low-latitude volcanic eruptions. Here, the authors present an investigation of the responses of summer precipitation over eastern China to large volcanic eruptions through analyzing a 1000-yr global climate model simulation driven by natural and anthropogenic forcing. Superposed epoch analyses of 18 cases of large volcanic eruption indicate that summer precipitation over eastern China significantly decreases in the eruption year and the year after. Model simulation suggests that this reduction of summer precipitation over eastern China can be attributed to a weakening of summer monsoon and a decrease of moisture vapor over tropical oceans caused by large volcanic eruptions.

Full access
Yaru Guo, Yuanlong Li, Fan Wang, and Yuntao Wei

Abstract

Ningaloo Niño—the interannually occurring warming episode in the southeast Indian Ocean (SEIO)—has strong signatures in ocean temperature and circulation and exerts profound impacts on regional climate and marine biosystems. Analysis of observational data and eddy-resolving regional ocean model simulations reveals that the Ningaloo Niño/Niña can also induce pronounced variability in ocean salinity, causing large-scale sea surface salinity (SSS) freshening of 0.15–0.20 psu in the SEIO during its warm phase. Model experiments are performed to understand the underlying processes. This SSS freshening is mutually caused by the increased local precipitation (~68%) and enhanced freshwater transport of the Indonesian Throughflow (ITF; ~28%) during Ningaloo Niño events. The effects of other processes, such as local winds and evaporation, are secondary (~18%). The ITF enhances the southward freshwater advection near the eastern boundary, which is critical in causing the strong freshening (>0.20 psu) near the Western Australian coast. Owing to the strong modulation effect of the ITF, SSS near the coast bears a higher correlation with El Niño–Southern Oscillation (0.57, 0.77, and 0.70 with the Niño-3, Niño-4, and Niño-3.4 indices, respectively) than sea surface temperature (−0.27, −0.42, and −0.35) during 1993–2016. Yet, an idealized model experiment with artificial damping for salinity anomaly indicates that ocean salinity has limited impact on ocean near-surface stratification and thus minimal feedback effect on the warming of Ningaloo Niño.

Restricted access
Xianghui Kong, Aihui Wang, Xunqiang Bi, Biyun Sun, and Jiangfeng Wei

Abstract

The sensitivity of hourly precipitation to cumulus parameterization and radiation schemes is explored by using the tropical-belt configuration of the Weather Research and Forecasting (WRF) Model. The domain covers the entire tropical region from 45°S to 45°N with a grid spacing of about 45 km. A series of 5-yr simulations with four cumulus parameterization schemes [new Tiedtke (NT), Kain–Fritsch (KF), new SAS (NS), and Tiedtke (TK)] and two radiation schemes (RRTMG and CAM) are carried out. We focus on the frequencies of hourly precipitation above three thresholds (0.02 mm h−1 = light drizzle rate; 0.2 mm h−1 = moderate rate; and 2 mm h−1 = heavy rate) between the observed CMORPH products and simulations. The sensitivity is higher for precipitation frequency than amount, and frequency is dominated by the cumulus parameterization. Frequencies above the moderate rate are well reproduced, whereas frequencies above the other two rates present large deviations. No combination of physical schemes is found to perform best in reproducing the frequencies above all thresholds. Simulations using the NT and NS schemes show higher precipitation frequencies above the light drizzle rate and lower precipitation frequencies above the heavy rate than those simulations using the KF and TK schemes. Precipitation frequency is higher when reproduced by experiments using the RRTMG scheme than those using the CAM scheme, except for frequencies above the light rate over oceans. The overestimation of frequency is mainly caused by too-frequent convective rainfall. The results imply that the triggering based on the vertical velocity may increase the occurrence of a rain event and that CAPE-based closure may increase the heavy precipitation frequency in the cumulus parameterization.

Restricted access
Yaru Guo, Yuanlong Li, Fan Wang, Yuntao Wei, and Zengrui Rong

Abstract

A high-resolution (3–8 km) regional oceanic general circulation model is utilized to understand the sea surface temperature (SST) variability of Ningaloo Niño in the southeast Indian Ocean (SEIO). The model reproduces eight Ningaloo Niño events with good fidelity and reveals complicated spatial structures. Mesoscale noises are seen in the warming signature and confirmed by satellite microwave SST data. Model experiments are carried out to quantitatively evaluate the effects of key processes. The results reveal that the surface turbulent heat flux (primarily latent heat flux) is the most important process (contribution > 68%) in driving and damping the SST warming for most events, while the roles of the Indonesian Throughflow (~15%) and local wind forcing are secondary. A suitable air temperature warming is essential to reproducing the reduced surface latent heat loss during the growth of SST warming (~66%), whereas the effect of the increased air humidity is negligibly small (1%). The established SST warming in the mature phase causes increased latent heat loss that initiates the decay of warming. A 20-member ensemble simulation is performed for the 2010/11 super Ningaloo Niño, which confirms the strong influence of ocean internal processes in the redistribution of SST warming signatures. Oceanic eddies can dramatically modulate the magnitudes of local SST warming, particularly in offshore areas where the “signal-to-noise” ratio is low, raising a caution for evaluating the predictability of Ningaloo Niño and its environmental consequences.

Free access
Wei Mei, Shang-Ping Xie, Ming Zhao, and Yuqing Wang

Abstract

Forced interannual-to-decadal variability of annual tropical cyclone (TC) track density in the western North Pacific between 1979 and 2008 is studied using TC tracks from observations and simulations by a 25-km-resolution version of the GFDL High-Resolution Atmospheric Model (HiRAM) that is forced by observed sea surface temperatures (SSTs). Two modes dominate the decadal variability: a nearly basinwide mode, and a dipole mode between the subtropics and lower latitudes. The former mode links to variations in TC number and is forced by SST variations over the off-equatorial tropical central North Pacific, whereas the latter might be associated with the Atlantic multidecadal oscillation. The interannual variability is also controlled by two modes: a basinwide mode driven by SST anomalies of opposite signs located in the tropical central Pacific and eastern Indian Ocean, and a southeast–northwest dipole mode connected to the conventional eastern Pacific ENSO. The seasonal evolution of the ENSO effect on TC activity is further explored via a joint empirical orthogonal function analysis using TC track density of consecutive seasons, and the analysis reveals that two types of ENSO are at work. Internal variability in TC track density is then examined using ensemble simulations from both HiRAM and a regional atmospheric model. It exhibits prominent spatial and seasonal patterns, and it is particularly strong in the South China Sea and along the coast of East Asia. This makes an accurate prediction and projection of TC landfall extremely challenging in these regions. In contrast, basin-integrated metrics (e.g., total TC counts and TC days) are more predictable.

Full access
Jiandong Li, Wei-Chyung Wang, Jiangyu Mao, Ziqian Wang, Gang Zeng, and Guoxing Chen

Abstract

Clouds strongly modulate regional radiation balance and their evolution is profoundly influenced by circulations. This study uses 2001–16 satellite and reanalysis data together with regional model simulations to investigate the spring shortwave cloud radiative effect (SWCRE) and the associated circulations over southeastern China (SEC). Strong SWCRE, up to −110 W m−2, persists throughout springtime in this region and its spring mean is the largest among the same latitudes of the Northern Hemisphere. SWCRE exhibits pronounced subseasonal variation and is closely associated with persistent regional ascending motion and moisture convergence, which favor large amounts of cloud liquid water and resultant strong SWCRE. Around pentad 12 (late February), SWCRE abruptly increases and afterward remains stable between 22° and 32°N. The thermal and dynamic effects of Tibetan Plateau and westerly jet provide appropriate settings for the maintenance of ascending motion, while water vapor, as cloud water supply, stably comes from the southern flank of the Tibetan Plateau and South China Sea. During pentads 25–36 (early May to late June), SWCRE is further enhanced by the increased water vapor transport caused by the march of East Asian monsoon systems, particularly after the onset of the South China Sea monsoon. After pentad 36, these circulations quickly weaken and the SWCRE decreases accordingly. Individual years with spring strong and weak rainfall are chosen to highlight the importance of the strength of the ascending motion. The simulation broadly reproduced the observed results, although biases exist. Finally, the model biases in SWCRE–circulation associations are discussed.

Open access
Wei-Chyung Wang, Wei Gong, Wen-Shung Kau, Cheng-Ta Chen, Huang-Hsiung Hsu, and Chia-Hsiu Tu

Abstract

Observations indicate that the East Asian summer monsoon (EASM) exhibits distinctive characteristics of large cloud amounts with associated heavy and persistent rainfall, although short breaks for clear sky usually occur. Consequently, the effects of cloud–radiation interactions can play an important role in the general circulation of the atmosphere and, thus, the evolution of the EASM. In this note, as a first step toward studying the topic, the 5-yr (January 1985–December 1989) Earth Radiation Budget Experiment (ERBE) dataset is used to show the spatial and temporal patterns of both shortwave (SW) and longwave (LW) cloud radiative forcing (CRF) at the top of the atmosphere over east China, and to compare the observed features with Atmospheric Model Intercomparison Project-II (AMIP-II) simulations with the University at Albany, State University of New York (SUNYA) Community Climate Model 3 (CCM3) and the ECHAM4 general circulation models.

The observations indicate that the net CRF provides a cooling effect to the atmosphere–surface climate system, dominated by the SW CRF cooling (albedo effect) with partial compensation from the LW CRF warming (greenhouse effect). The SW CRF shows a strong seasonal cycle, and its peak magnitude is particularly large, ∼110 W m−2, for south China and the Yangtze–Huai River valley (YHRV) during May and June, while the LW CRF is about 50 W m−2 for the same months with a weak dependence on the latitudes and seasons. These characteristics are in sharp contrast to the Northern Hemispheric zonal means of the same latitude bands and seasons, thus implying a unique role for cloud–radiation interaction in east China. Both model simulations show similar observed characteristics, although biases exist. For example, in May, the ECHAM4 underestimates the SW CRF while the SUNYA CCM3 simulates a significantly larger value, both attributed to the respective biases in the simulated total cloud cover. Model-to-observation comparisons of the association between total cloud cover and SW CRF, and between high cloud cover and LW CRF, are also presented and their differences are discussed. Finally, the SUNYA CCM3 biases in the CRF and its relevance to the model cloud biases are discussed in the context of model cold and dry biases in climate simulations.

Full access
Wei Gu, Lin Wang, Zeng-Zhen Hu, Kaiming Hu, and Yong Li

Abstract

The first rainy season (FRS), also known as the presummer rainy season, is the first standing stage of the East Asian summer monsoon when over 40% of the annual precipitation is received over South China. Based on the start and end dates of the FRS defined by the China Meteorological Administration, this study investigates the interannual variations of the FRS precipitation over South China and its mechanism with daily mean data. The length and start/end date of the FRS vary year to year, and the average length of the FRS is 90 days, spanning from 6 April to 4 July. Composite analyses reveal that the years with abundant FRS precipitation over South China feature weakened anticyclonic wind shear over the Indochina Peninsula in the upper troposphere, southwestward shift of the western Pacific subtropical high, and anticyclonic wind anomalies over the South China Sea in the lower troposphere. The lower-tropospheric southwesterly wind anomalies are especially important because they help to enhance warm advection and water vapor transport toward South China, increase the lower tropospheric convective instability, and shape the pattern of the anomalous ascent over South China. It is further proposed that a local positive feedback between circulation and precipitation exists in this process. The variability of the FRS precipitation can be well explained by a zonal sea surface temperature (SST) dipole in the tropical Pacific and the associated Matsuno–Gill-type Rossby wave response over the western North Pacific. The interannual variability of both the SST dipole and the FRS precipitation over South China is weakened after the year 2000.

Full access
Yan Yu, Michael Notaro, Fuyao Wang, Jiafu Mao, Xiaoying Shi, and Yaxing Wei

Abstract

Generalized equilibrium feedback assessment (GEFA) is a potentially valuable multivariate statistical tool for extracting vegetation feedbacks to the atmosphere in either observations or coupled Earth system models. The reliability of GEFA at capturing the terrestrial impacts on regional climate is demonstrated here using the National Center for Atmospheric Research Community Earth System Model (CESM), with focus on North Africa. The feedback is assessed statistically by applying GEFA to output from a fully coupled control run. To reduce the sampling error caused by short data records, the traditional or full GEFA is refined through stepwise GEFA by dropping unimportant forcings. Two ensembles of dynamical experiments are developed for the Sahel or West African monsoon region against which GEFA-based vegetation feedbacks are evaluated. In these dynamical experiments, regional leaf area index (LAI) is modified either alone or in conjunction with soil moisture, with the latter runs motivated by strong regional soil moisture–LAI coupling. Stepwise GEFA boasts higher consistency between statistically and dynamically assessed atmospheric responses to land surface anomalies than full GEFA, especially with short data records. GEFA-based atmospheric responses are more consistent with the coupled soil moisture–LAI experiments, indicating that GEFA is assessing the combined impacts of coupled vegetation and soil moisture. Both the statistical and dynamical assessments reveal a negative vegetation–rainfall feedback in the Sahel associated with an atmospheric stability mechanism in CESM versus a weaker positive feedback in the West African monsoon region associated with a moisture recycling mechanism in CESM.

Full access
Fuyao Wang, Yan Yu, Michael Notaro, Jiafu Mao, Xiaoying Shi, and Yaxing Wei

Abstract

This study advances the practicality and stability of the traditional multivariate statistical method, generalized equilibrium feedback assessment (GEFA), for decomposing the key oceanic drivers of regional atmospheric variability, especially when available data records are short. An advanced stepwise GEFA methodology is introduced, in which unimportant forcings within the forcing matrix are eliminated through stepwise selection. Method validation of stepwise GEFA is performed using the CESM, with a focused application to northern and tropical Africa (NTA). First, a statistical assessment of the atmospheric response to each primary oceanic forcing is carried out by applying stepwise GEFA to a fully coupled control run. Then, a dynamical assessment of the atmospheric response to individual oceanic forcings is performed through ensemble experiments by imposing sea surface temperature anomalies over focal ocean basins. Finally, to quantify the reliability of stepwise GEFA, the statistical assessment is evaluated against the dynamical assessment in terms of four metrics: the percentage of grid cells with consistent response sign, the spatial correlation of atmospheric response patterns, the area-averaged seasonal cycle of response magnitude, and consistency in associated mechanisms between assessments. In CESM, tropical modes, namely El Niño–Southern Oscillation and the tropical Indian Ocean Basin, tropical Indian Ocean dipole, and tropical Atlantic Niño modes, are the dominant oceanic controls of NTA climate. In complementary studies, stepwise GEFA is validated in terms of isolating terrestrial forcings on the atmosphere, and observed oceanic and terrestrial drivers of NTA climate are extracted to establish an observational benchmark for subsequent coupled model evaluation and development of process-based weights for regional climate projections.

Full access