Search Results

You are looking at 21 - 30 of 59 items for

  • Author or Editor: Wen-Chau Lee x
  • Refine by Access: All Content x
Clear All Modify Search
Robert A. Houze Jr.
,
Wen-Chau Lee
, and
Michael M. Bell

Abstract

The convection occurring in the tropical depression that became Hurricane Ophelia (2005) was investigated just prior to tropical storm formation. Doppler radar showed a deep, wide, intense convective cell of a type that has been previously thought to occur in intensifying tropical depressions but has not heretofore been documented in detail. The updraft of the cell was 10 km wide, 17 km deep, had updrafts of 10–20 m s−1 throughout its mid- to upper levels, and contained a cyclonic vorticity maximum. The massive convective updraft was maintained by strong positive buoyancy, which was maximum at about the 10-km level, probably aided by latent heat of freezing. Evaporative cooling and precipitation drag occurred in the rain shower of the cell but were insufficient to produce a strong downdraft or gust front outflow to force the updraft. The convective updraft was fed by a layer of strong inflow that was several kilometers deep. Wind-induced turbulence, just above the ocean surface, enriched the equivalent potential temperature of the boundary layer of the inflow air, thus creating an unstable layer with little convective inhibition. This air was raised to its level of free convection when it encountered the denser air in the rainy core of the convection. The updraft motion and latent heat release in the intense cell generated potential vorticity throughout the low to midlevels, and contained a cyclonic vortex at the midlevels. Vorticity generated throughout the depth of the low to midtroposphere within convective updraft cells was subsequently incorporated into a stratiform region attached to the region of active convective cells. The vorticity perturbations at the low to midlevels in convective cells and their attached stratiform regions were available to be axisymmetrized into the larger-scale intensifying depression vortex.

Full access
Ben Jong-Dao Jou
,
Wen-Chau Lee
,
Su-Ping Liu
, and
Yu-Cheng Kao

Abstract

The primary circulation of atmospheric vortices, such as tropical cyclones and tornadoes, can be estimated from single-Doppler radar observations using the ground-based velocity track display (GBVTD) algorithm. The GBVTD algorithm has limitations in the following four areas: 1) distortion in the retrieved asymmetric wind fields, 2) a limited analysis domain, 3) the inability to resolve the cross-beam component of the mean wind, and 4) the inability to separate the asymmetric tangential and radial winds. This paper presents the generalized velocity track display (GVTD) algorithm, which eliminates the first two limitations inherent in the GBVTD technique and demonstrates the possibility of subjectively estimating the mean wind vector when its signature is visible beyond the influence of the vortex circulation.

In this new paradigm, the GVTD algorithm fits the atmospheric vortex circulation to a new variable VdD/RT in a linear azimuth angle (θ′), rather than the Doppler velocity Vd in a nonlinear angle (ψ), which is used in GBVTD. Key vortex kinematic structures (e.g., mean wind, axisymmetric tangential wind, etc.) in the VdD/RT space simplify the interpretation of the radar signature and eliminate the geometric distortion inherent in the Vd display. This is a significant improvement in diagnosing vortex structures in both operations and research. The advantages of using VdD/RT are illustrated using analytical atmospheric vortices, and the properties are compared with GBVTD. The characteristics of the VdD/RT display of Typhoon Gladys (1994) can be approximated by a constant mean wind plus an axisymmetric vortex.

Full access
Wen-Chau Lee
,
Ben Jong-Dao Jou
,
Pao-Liang Chang
, and
Shiung-Ming Deng

Abstract

Deducing the three-dimensional primary circulation of landfalling tropical cyclones (TCs) from single ground-based Doppler radar data remains a difficult task. The evolution and structure of landfalling TCs and their interactions with terrain are left uncharted due to the lack of dual-Doppler radar observations. Existing ground-based single-Doppler radar TC algorithms provide only qualitative information on axisymmetric TC center location and intensity. In order to improve understanding of the wind structures of landfalling TCs using the widely available WSR-88D data along the U.S. coastal region, a single ground-based radar TC wind retrieval technique, the ground-based Velocity Track Display (GBVTD) technique, is developed. Part I of this paper presents 1) single-Doppler velocity patterns of analytic, asymmetric TCs, 2) derivation of the GBVTD technique, and 3) evaluation of the GBVTD-retrieved winds using analytic TCs.

The Doppler velocity patterns of asymmetric TCs display more complex structure than their axisymmetric counterparts. The asymmetric structure of TCs can be inferred qualitatively from the pattern (or curvature) of the zero Doppler velocity line and the position and shape of the Doppler velocity dipole. However, without knowing the axisymmetric portion of the TC circulation, it is extremely difficult to extract quantitative information from these similar Doppler velocity patterns.

Systematic evaluations on the GBVTD-retrieved winds show good agreement compared with the original analytic wind fields for axisymmetric flows plus mean wind and/or angular wavenumber 1, 2, and 3 asymmetry. It is also shown that the GBVTD technique retrieves wind maxima that are not directly observed (perpendicular to the radar beams) because the GBVTD technique uses the Doppler velocity gradient, not the observed maxima, to retrieve wind maxima. The success of the GBVTD-retrieved winds and understanding their characteristics provide the theoretical basis to nowcast TC kinematic structure.

Full access
Howard B. Bluestein
,
Wen-Chau Lee
,
Michael Bell
,
Christopher C. Weiss
, and
Andrew L. Pazmany

Abstract

This is Part II of a paper detailing an analysis of high-resolution wind and reflectivity data collected by a mobile, W-band Doppler radar; the analysis depicts the near-surface life history of a tornado in a supercell in north-central Nebraska on 5 June 1999. The structure of the tornado vortex near the ground is described from a sequence of sector scans at 10–15-s intervals during much of the lifetime of the tornado. The formation of the tornado vortex near the ground is described in Part I.

The wind and reflectivity features in the tornado evolved on timescales of 10 s or less. A time history of the azimuthally averaged azimuthal and radial wind profiles and the asymmetric components of the azimuthal and radial wind fields in the tornado were estimated by applying the ground-based velocity track display (GBVTD) technique to the Doppler wind data. If the magnitude of the asymmetric part of the radial wind component were indeed much less than that of the azimuthal wind component (a necessary requirement for application of the GBVTD technique), then the azimuthal wind field was dominated by quasi-stationary wavenumber-2 disturbances for most of the lifetime of the tornado. The radius of maximum wind (RMW) contracted as the tornado intensified and increased as the tornado dissipated. Shorter-timescale oscillations in azimuthal wind speed and RMW were found that could be manifestations of inertial oscillations. Evidence was also found that the tornado vortex was two-celled when it was most intense. During the “shrinking stage,” the vortex remained relatively wide and intense, even though the condensation funnel had narrowed substantially.

Full access
Roger M. Wakimoto
,
Hanne V. Murphey
,
Robert G. Fovell
, and
Wen-Chau Lee

Abstract

Finescale radar observations of intense thermals/starting plumes, during the early stages of precipitation formation, were collected by an airborne Doppler radar on two separate days. The radar data were recorded as the aircraft flew underneath the developing echoes. Mantle echoes (echoes that often appear as an inverted U shape) were observed on both days. Striking in one of the scans was the resemblance of the echo to a mushroom cloud resulting from a nuclear explosion. Numerical simulations using a two-dimensional cloud-resolving model were run to augment the interpretation of the observations. One of the important conclusions was the proposed modification to the default bulk microphysical scheme used in the model. The default scheme yields “a rush to precipitation” leading to the early establishment of large precipitation contents, which is not supported by the observations. Suggested modifications to the scheme are presented.

Full access
Wen-Chau Lee
,
Ben J-D. Jou
,
Pao-Liang Chang
, and
Frank D. Marks Jr.

Abstract

This paper is the third of a series that focuses on the applications of the ground-based velocity track display (GBVTD) technique and the GBVTD-simplex center finding algorithm developed in the previous two papers to a real tropical cyclone (TC). The evolution and structure of Typhoon Alex (1987), including full tangential winds, mean radial winds, one component of the mean flow, and their derived axisymmetric angular momentum and perturbation pressure fields are reconstructed from 16 volume scans (6.5 h of data with a 2-h gap) from the Civil Aeronautic Administration (CAA) Doppler radar while Typhoon Alex moved across the mountainous area in northern Taiwan.

This analysis retrieves a plausible and physically consistent three-dimensional primary circulation of a landfalling TC using a single ground-based Doppler radar. Highly asymmetric wind structures were resolved by the GBVTD technique where the maximum relative tangential wind at z = 2 km evolved from 52 m s−1 (before landfall), to less than 40 m s−1 (after landfall), to less than 35 m s−1 (entering the East China Sea). Alex’s eye began to fill with precipitation while its intensity decreased rapidly after landfall, a characteristic of circulations disrupted by terrain. The mean radial wind field revealed a layer of low-level inflow in agreement with past TC observations. The outward slope of the eyewall reflectivity maximum was consistent with the constant angular momentum contours within the eyewall. After Alex entered the East China Sea, its circulation became more axisymmetric.

The axisymmetric perturbation pressure field was retrieved using the gradient wind approximation, which, when used in conjunction with one or more surface pressure measurements within the analysis domain, can estimate the central pressure. The retrieved perturbation pressure fields at two time periods were compared with surface pressures reported in northern Taiwan. Considering the assumptions involved and the influence of terrain, good agreement (only 1–2-mb deviation) was found between them. This agreement indicates the relative quality of the GBVTD-retrieved axisymmetric circulation and suggests GBVTD-retrieved quantities can be useful in operational and research applications.

Full access
Yu-Chieng Liou
,
Tai-Chi Chen Wang
,
Wen-Chau Lee
, and
Ya-Ju Chang

Abstract

The ground-based velocity track display (GBVTD) technique is extended to two Doppler radars to retrieve the structure of a tropical cyclone’s (TC’s) circulation. With this extension, it is found that the asymmetric part of the TC radial wind component can be derived up to its angular wavenumber-1 structure, and the accuracy of the retrieved TC tangential wind component can be further improved. Although two radar systems are used, a comparison with the traditional dual-Doppler synthesis indicates that this extended GBVTD (EGBVTD) approach is able to estimate more of the TC circulation when there are missing data. Previous research along with this study reveals that the existence of strong asymmetric radial flows can degrade the quality of the GBVTD-derived wind fields. When a TC is observed by one radar, it is suggested that the GBVTD method be applied to TCs over a flat surface (e.g., the ocean) where the assumption of relatively smaller asymmetric radial winds than asymmetric tangential winds is more likely to be true. However, when a TC is observed by two radar systems, especially when the topographic effects are expected to be significant, the EGBVTD rather than the traditional dual-Doppler synthesis should be used.

The feasibility of the proposed EGBVTD method is demonstrated by applying it to an idealized TC circulation model as well as a real case study. Finally, the possibility of combining EGBVTD with other observational instruments, such as dropsonde or wind profilers, to recover the asymmetric TC radial flow structures with even higher wavenumbers is discussed.

Full access
Qingnong Xiao
,
Ying-Hwa Kuo
,
Juanzhen Sun
,
Wen-Chau Lee
,
Dale M. Barker
, and
Eunha Lim

Abstract

A radar reflectivity data assimilation scheme was developed within the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) three-dimensional variational data assimilation (3DVAR) system. The model total water mixing ratio was used as a control variable. A warm-rain process, its linear, and its adjoint were incorporated into the system to partition the moisture and hydrometeor increments. The observation operator for radar reflectivity was developed and incorporated into the 3DVAR. With a single reflectivity observation, the multivariate structures of the analysis increments that included cloud water and rainwater mixing ratio increments were examined. Using the onshore Doppler radar data from Jindo, South Korea, the capability of the radar reflectivity assimilation for the landfalling Typhoon Rusa (2002) was assessed. Verifications of inland quantitative precipitation forecasting (QPF) of Typhoon Rusa (2002) showed positive impacts of assimilating radar reflectivity data on the short-range QPF.

Full access
Huaqing Cai
,
Wen-Chau Lee
,
Michael M. Bell
,
Cory A. Wolff
,
Xiaowen Tang
, and
Frank Roux

Abstract

Uncertainties in aircraft inertial navigation system and radar-pointing angles can have a large impact on the accuracy of airborne dual-Doppler analyses. The Testud et al. (THL) method has been routinely applied to data collected by airborne tail Doppler radars over flat and nonmoving terrain. The navigation correction method proposed in Georgis et al. (GRH) extended the THL method over complex terrain and moving ocean surfaces by using a variational formulation but its capability over ocean has yet to be tested. Recognizing the limitations of the THL method, Bosart et al. (BLW) proposed to derive ground speed, tilt, and drift errors by statistically comparing aircraft in situ wind with dual-Doppler wind at the flight level. When combined with the THL method, the BLW method can retrieve all navigation errors accurately; however, it can be applied only to flat surfaces, and it is rather difficult to automate. This paper presents a generalized navigation correction method (GNCM) based on the GRH method that will serve as a single algorithm for airborne tail Doppler radar navigation correction for all possible surface conditions. The GNCM includes all possible corrections in the cost function and implements a new closure assumption by taking advantage of an accurate aircraft ground speed derived from GPS technology. The GNCM is tested extensively using synthetic airborne Doppler radar data with known navigation errors and published datasets from previous field campaigns. Both tests show the GNCM is able to correct the navigation errors associated with airborne tail Doppler radar data with adequate accuracy.

Full access
Michael M. Bell
,
Wen-Chau Lee
,
Cory A. Wolff
, and
Huaqing Cai

Abstract

An automated quality control preprocessing algorithm for removing nonweather radar echoes in airborne Doppler radar data has been developed. This algorithm can significantly reduce the time and experience level required for interactive radar data editing prior to dual-Doppler wind synthesis or data assimilation. The algorithm uses the editing functions in the Solo software package developed by the National Center for Atmospheric Research to remove noise, Earth-surface, sidelobe, second-trip, and other artifacts. The characteristics of these nonweather radar returns, the algorithm to identify and remove them, and the impacts of applying different threshold levels on wind retrievals are presented. Verification was performed by comparison with published Electra Doppler Radar (ELDORA) datasets that were interactively edited by different experienced radar meteorologists. Four cases consisting primarily of convective echoes from the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX), Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX), Hurricane Rainband and Intensity Change Experiment (RAINEX), and The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC)/Tropical Cyclone Structure-2008 (TCS08) field experiments were used to test the algorithm using three threshold levels for data removal. The algorithm removes 80%, 90%, or 95% of the nonweather returns and retains 95%, 90%, or 85% of the weather returns on average at the low-, medium-, and high-threshold levels. Increasing the threshold level removes more nonweather echoes at the expense of also removing more weather echoes. The low threshold is recommended when weather retention is the highest priority, and the high threshold is recommended when nonweather removal is the highest priority. The medium threshold is a good compromise between these two priorities and is recommended for general use. Dual-Doppler wind retrievals using the automatically edited data compare well to retrievals from interactively edited data.

Full access