Search Results

You are looking at 21 - 26 of 26 items for :

  • Author or Editor: Witold F. Krajewski x
  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All Modify Search
Luciana K. Cunha, James A. Smith, Witold F. Krajewski, Mary Lynn Baeck, and Bong-Chul Seo

Abstract

The NEXRAD program has recently upgraded the WSR-88D network observational capability with dual polarization (DP). In this study, DP quantitative precipitation estimates (QPEs) provided by the current version of the NWS system are evaluated using a dense rain gauge network and two other single-polarization (SP) rainfall products. The analyses are performed for the period and spatial domain of the Iowa Flood Studies (IFloodS) campaign. It is demonstrated that the current version (2014) of QPE from DP is not superior to that from SP mainly because DP QPE equations introduce larger bias than the conventional rainfall–reflectivity [i.e., R(Z)] relationship for some hydrometeor types. Moreover, since the QPE algorithm is based on hydrometeor type, abrupt transitions in the phase of hydrometeors introduce errors in QPE with surprising variation in space that cannot be easily corrected using rain gauge data. In addition, the propagation of QPE uncertainties across multiple hydrological scales is investigated using a diagnostic framework. The proposed method allows us to quantify QPE uncertainties at hydrologically relevant scales and provides information for the evaluation of hydrological studies forced by these rainfall datasets.

Full access
Efrat Morin, Witold F. Krajewski, David C. Goodrich, Xiaogang Gao, and Soroosh Sorooshian

Abstract

Meteorological radar is a remote sensing system that provides rainfall estimations at high spatial and temporal resolutions. The radar-based rainfall intensities (R) are calculated from the observed radar reflectivities (Z). Often, rain gauge rainfall observations are used in combination with the radar data to find the optimal parameters in the ZR transformation equation. The scale dependency of the power-law ZR parameters when estimated from radar reflectivity and rain gauge intensity data is explored herein. The multiplicative (a) and exponent (b) parameters are said to be “scale dependent” if applying the observed and calculated rainfall intensities to objective function at different scale results in different “optimal” parameters. Radar and gauge data were analyzed from convective storms over a midsize, semiarid, and well-equipped watershed. Using the root-mean-square difference (rmsd) objective function, a significant scale dependency was observed. Increased time- and space scales resulted in a considerable increase of the a parameter and decrease of the b parameter. Two sources of uncertainties related to scale dependency were examined: 1) observational uncertainties, which were studied both experimentally and with simplified models that allow representation of observation errors; and 2) model uncertainties. It was found that observational errors are mainly (but not only) associated with positive bias of the b parameter that is reduced with integration, at least for small scales. Model errors also result in scale dependency, but the trend is less systematic, as in the case of observational errors. It is concluded that identification of optimal scale for ZR relationship determination requires further knowledge of reflectivity and rain-intensity error structure.

Full access
Bong-Chul Seo, Brenda Dolan, Witold F. Krajewski, Steven A. Rutledge, and Walter Petersen

Abstract

This study compares and evaluates single-polarization (SP)- and dual-polarization (DP)-based radar-rainfall (RR) estimates using NEXRAD data acquired during Iowa Flood Studies (IFloodS), a NASA GPM ground validation field campaign carried out in May–June 2013. The objective of this study is to understand the potential benefit of the DP quantitative precipitation estimation, which selects different rain-rate estimators according to radar-identified precipitation types, and to evaluate RR estimates generated by the recent research SP and DP algorithms. The Iowa Flood Center SP (IFC-SP) and Colorado State University DP (CSU-DP) products are analyzed and assessed using two high-density, high-quality rain gauge networks as ground reference. The CSU-DP algorithm shows superior performance to the IFC-SP algorithm, especially for heavy convective rains. We verify that dynamic changes in the proportion of heavy rain during the convective period are associated with the improved performance of CSU-DP rainfall estimates. For a lighter rain case, the IFC-SP and CSU-DP products are not significantly different in statistical metrics and visual agreement with the rain gauge data. This is because both algorithms use the identical NEXRAD reflectivity–rain rate (ZR) relation that might lead to substantial underestimation for the presented case.

Full access
Ibrahim Demir, Helen Conover, Witold F. Krajewski, Bong-Chul Seo, Radosław Goska, Yubin He, Michael F. McEniry, Sara J. Graves, and Walter Petersen

Abstract

In the spring of 2013, NASA conducted a field campaign known as Iowa Flood Studies (IFloodS) as part of the Ground Validation (GV) program for the Global Precipitation Measurement (GPM) mission. The purpose of IFloodS was to enhance the understanding of flood-related, space-based observations of precipitation processes in events that transpire worldwide. NASA used a number of scientific instruments such as ground-based weather radars, rain and soil moisture gauges, stream gauges, and disdrometers to monitor rainfall events in Iowa. This article presents the cyberinfrastructure tools and systems that supported the planning, reporting, and management of the field campaign and that allow these data and models to be accessed, evaluated, and shared for research. The authors describe the collaborative informatics tools, which are suitable for the network design, that were used to select the locations in which to place the instruments. How the authors used information technology tools for instrument monitoring, data acquisition, and visualizations after deploying the instruments and how they used a different set of tools to support data analysis and modeling after the campaign are also explained. All data collected during the campaign are available through the Global Hydrology Resource Center (GHRC), a NASA Distributed Active Archive Center (DAAC).

Full access
Bong-Chul Seo, Witold F. Krajewski, Felipe Quintero, Mohamed ElSaadani, Radoslaw Goska, Luciana K. Cunha, Brenda Dolan, David B. Wolff, James A. Smith, Steven A. Rutledge, and Walter A. Petersen

Abstract

This study describes the generation and testing of a reference rainfall product created from field campaign datasets collected during the NASA Global Precipitation Measurement (GPM) mission Ground Validation Iowa Flood Studies (IFloodS) experiment. The study evaluates ground-based radar rainfall (RR) products acquired during IFloodS in the context of building the reference rainfall product. The purpose of IFloodS was not only to attain a high-quality ground-based reference for the validation of satellite rainfall estimates but also to enhance understanding of flood-related rainfall processes and the predictability of flood forecasting. We assessed the six RR estimates (IFC, Q2, CSU-DP, NWS-DP, Stage IV, and Q2-Corrected) using data from rain gauge and disdrometer networks that were located in the broader field campaign area of central and northeastern Iowa. We performed the analyses with respect to time scales ranging from 1 h to the entire campaign period in order to compare the capabilities of each RR product and to characterize the error structure at scales that are frequently used in hydrologic applications. The evaluation results show that the Stage IV estimates perform superior to other estimates, demonstrating the need for gauge-based bias corrections of radar-only products. This correction should account for each product’s algorithm-dependent error structure that can be used to build unbiased rainfall products for the campaign reference. We characterized the statistical error structures (e.g., systematic and random components) of each RR estimate and used them for the generation of a campaign reference rainfall product. To assess the hydrologic utility of the reference product, we performed hydrologic simulations driven by the reference product over the Turkey River basin. The comparison of hydrologic simulation results demonstrates that the campaign reference product performs better than Stage IV in streamflow generation.

Full access
Kumar Vijay Mishra, Witold F. Krajewski, Radoslaw Goska, Daniel Ceynar, Bong-Chul Seo, Anton Kruger, James J. Niemeier, Miguel B. Galvez, Merhala Thurai, V. N. Bringi, Leonid Tolstoy, Paul A. Kucera, Walter A. Petersen, Jacopo Grazioli, and Andrew L. Pazmany

Abstract

This article presents the data collected and analyzed using the University of Iowa’s X-band polarimetric (XPOL) radars that were part of the spring 2013 hydrology-oriented Iowa Flood Studies (IFloodS) field campaign, sponsored by NASA’s Global Precipitation Measurement (GPM) Ground Validation (GV) program. The four mobile radars have full scanning capabilities that provide quantitative estimation of the rainfall at high temporal and spatial resolutions over experimental watersheds. IFloodS was the first extensive test of the XPOL radars, and the XPOL radars demonstrated their field worthiness during this campaign with 46 days of nearly uninterrupted, remotely monitored, and controlled operations. This paper presents detailed postcampaign analyses of the high-resolution, research-quality data that the XPOL radars collected. The XPOL dual-polarimetric products and rainfall are compared with data from other instruments for selected diverse meteorological events at high spatiotemporal resolutions from unprecedentedly unique and vast data generated during IFloodS operations. The XPOL data exhibit a detailed, complex structure of precipitation viewed at multiple range resolutions (75 and 30 m). The inter-XPOL comparisons within an overlapping scanned domain demonstrate consistency across different XPOL units. The XPOLs employed a series of heterogeneous scans and obtained estimates of the meteorological echoes up to a range oversampling of 7.5 m. A finer-resolution (30 m) algorithm is described to correct the polarimetric estimates for attenuation at the X band and obtain agreement of attenuation-corrected products with disdrometers and NASA S-band polarimetric (NPOL) radar. The paper includes hardware characterization of Iowa XPOL radars conducted prior to the deployment in IFloodS following the GPM calibration protocol.

Full access