Search Results
You are looking at 21 - 30 of 41 items for
- Author or Editor: Xianan Jiang x
- Refine by Access: All Content x
Abstract
The authors quantify systematic differences between modern observation- and reanalysis-based estimates of atmospheric heating rates and identify dominant variability modes over tropical oceans. Convergence of heat fluxes between the top of the atmosphere and the surface are calculated over the oceans using satellite-based radiative and sensible heat fluxes and latent heating from precipitation estimates. The convergence is then compared with column-integrated atmospheric heating based on Tropical Rainfall Measuring Mission data as well as the heating calculated using temperatures from the Atmospheric Infrared Sounder and wind fields from the Modern-Era Retrospective Analysis for Research and Applications (MERRA). Corresponding calculations using MERRA and the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis heating rates and heat fluxes are also performed. The geographical patterns of atmospheric heating rates show heating regimes over the intertropical convergence zone and summertime monsoons and cooling regimes over subsidence areas in the subtropical oceans. Compared to observation-based datasets, the reanalyses have larger atmospheric heating rates in heating regimes and smaller cooling rates in cooling regimes. For the averaged heating rates over the oceans in 40°S–40°N, the observation-based datasets have net atmospheric cooling rates (from −15 to −22 W m−2) compared to the reanalyses net warming rates (5.0–5.2 W m−2). This discrepancy implies different pictures of atmospheric heat transport. Wavelet spectra of atmospheric heating rates show distinct maxima of variability in annual, semiannual, and/or intraseasonal time scales. In regimes where deep convection frequently occurs, variability is mainly driven by latent heating. In the subtropical subsidence areas, variability in radiative heating is comparable to that in latent heating.
Abstract
The authors quantify systematic differences between modern observation- and reanalysis-based estimates of atmospheric heating rates and identify dominant variability modes over tropical oceans. Convergence of heat fluxes between the top of the atmosphere and the surface are calculated over the oceans using satellite-based radiative and sensible heat fluxes and latent heating from precipitation estimates. The convergence is then compared with column-integrated atmospheric heating based on Tropical Rainfall Measuring Mission data as well as the heating calculated using temperatures from the Atmospheric Infrared Sounder and wind fields from the Modern-Era Retrospective Analysis for Research and Applications (MERRA). Corresponding calculations using MERRA and the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis heating rates and heat fluxes are also performed. The geographical patterns of atmospheric heating rates show heating regimes over the intertropical convergence zone and summertime monsoons and cooling regimes over subsidence areas in the subtropical oceans. Compared to observation-based datasets, the reanalyses have larger atmospheric heating rates in heating regimes and smaller cooling rates in cooling regimes. For the averaged heating rates over the oceans in 40°S–40°N, the observation-based datasets have net atmospheric cooling rates (from −15 to −22 W m−2) compared to the reanalyses net warming rates (5.0–5.2 W m−2). This discrepancy implies different pictures of atmospheric heat transport. Wavelet spectra of atmospheric heating rates show distinct maxima of variability in annual, semiannual, and/or intraseasonal time scales. In regimes where deep convection frequently occurs, variability is mainly driven by latent heating. In the subtropical subsidence areas, variability in radiative heating is comparable to that in latent heating.
Abstract
As a key component of tropical atmospheric variability, intraseasonal variability (ISV) over the eastern North Pacific Ocean (ENP) exerts pronounced influences on regional weather and climate. Since general circulation models (GCMs) are essential tools for prediction and projection of future climate, current model deficiencies in representing this important variability leave us greatly disadvantaged in studies and prediction of climate change. In this study, the authors have assessed model fidelity in representing ENP ISV by analyzing 16 GCMs participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Among the 16 CMIP5 GCMs examined in this study, only seven GCMs capture the spatial pattern of the leading ENP ISV mode relatively well, although even these GCMs exhibit biases in simulating ISV amplitude. Analyses indicate that model fidelity in representing ENP ISV is closely associated with the ability to simulate a realistic summer mean state. The presence of westerly or weak mean easterly winds over the ENP warm pool region could be conducive to more realistic simulations of the ISV. One hypothesis to explain this relationship is that a realistic mean state could produce the correct sign of surface flux anomalies relative to the ISV convection, which helps to destabilize local intraseasonal disturbances. The projected changes in characteristics of ENP ISV under the representative concentration pathway 8.5 (RCP8.5) projection scenario are also explored based on simulations from three CMIP5 GCMs. Results suggest that, in a future climate, the amplitude of ISV could be enhanced over the southern part of the ENP while reduced over the northern ENP off the coast of Mexico/Central America and the Caribbean.
Abstract
As a key component of tropical atmospheric variability, intraseasonal variability (ISV) over the eastern North Pacific Ocean (ENP) exerts pronounced influences on regional weather and climate. Since general circulation models (GCMs) are essential tools for prediction and projection of future climate, current model deficiencies in representing this important variability leave us greatly disadvantaged in studies and prediction of climate change. In this study, the authors have assessed model fidelity in representing ENP ISV by analyzing 16 GCMs participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Among the 16 CMIP5 GCMs examined in this study, only seven GCMs capture the spatial pattern of the leading ENP ISV mode relatively well, although even these GCMs exhibit biases in simulating ISV amplitude. Analyses indicate that model fidelity in representing ENP ISV is closely associated with the ability to simulate a realistic summer mean state. The presence of westerly or weak mean easterly winds over the ENP warm pool region could be conducive to more realistic simulations of the ISV. One hypothesis to explain this relationship is that a realistic mean state could produce the correct sign of surface flux anomalies relative to the ISV convection, which helps to destabilize local intraseasonal disturbances. The projected changes in characteristics of ENP ISV under the representative concentration pathway 8.5 (RCP8.5) projection scenario are also explored based on simulations from three CMIP5 GCMs. Results suggest that, in a future climate, the amplitude of ISV could be enhanced over the southern part of the ENP while reduced over the northern ENP off the coast of Mexico/Central America and the Caribbean.
Abstract
Eight years of Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) level-3 cloud data in conjunction with collocated Interim ECMWF Re-Analysis are used to investigate relationships between isolated low-topped cloud fraction (LCF) and dynamics/thermodynamics versus averaging time scale. Correlation coefficients between LCF and −SST exceed 0.70 over 56% of ocean regions from 25°S to 25°N for 90-day running means and exceed 0.70 between LCF and 500-hPa omega (ω 500) for over one-third of oceans from 50°S to 50°N. Correlations increase most dramatically by increasing the averaging time scale from 1 day to about 15, owing to the large LCF synoptic variability and random effects that are suppressed by averaging. In five regions selected with monthly mean SSTs between 291 and 303 K, SST decreases by −0.13 K %-1 low-cloud cover increase. Monthly LCF is also correlated with estimated inversion strength (EIS), which is SST dominated in low latitudes and free tropospheric temperature dominated in the northeast Atlantic, Pacific, and midlatitudes, though SST and stability are poor predictors of LCF over the southern oceans.
Where the fraction of variance explained by the annual LCF harmonic is high, maximum LCF tends to lead minimum SST by ~15–30 days such that clouds can amplify the SST annual cycle, especially when LCF maxima coexist with insolation minima. Monthly mean LCF tends to scale with ω 500 exponentially over the convective margins and offshore of the Pacific Northwest, but daily climatology relationships indicate that LCF levels off and even diminishes for ω 500 > 0.05 Pa s−1, suggesting a limit through, perhaps, a too strong suppression of boundary layer heights. This suggests the need for dynamic-regime analysis in diagnosing low cloud/circulation feedbacks.
Abstract
Eight years of Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) level-3 cloud data in conjunction with collocated Interim ECMWF Re-Analysis are used to investigate relationships between isolated low-topped cloud fraction (LCF) and dynamics/thermodynamics versus averaging time scale. Correlation coefficients between LCF and −SST exceed 0.70 over 56% of ocean regions from 25°S to 25°N for 90-day running means and exceed 0.70 between LCF and 500-hPa omega (ω 500) for over one-third of oceans from 50°S to 50°N. Correlations increase most dramatically by increasing the averaging time scale from 1 day to about 15, owing to the large LCF synoptic variability and random effects that are suppressed by averaging. In five regions selected with monthly mean SSTs between 291 and 303 K, SST decreases by −0.13 K %-1 low-cloud cover increase. Monthly LCF is also correlated with estimated inversion strength (EIS), which is SST dominated in low latitudes and free tropospheric temperature dominated in the northeast Atlantic, Pacific, and midlatitudes, though SST and stability are poor predictors of LCF over the southern oceans.
Where the fraction of variance explained by the annual LCF harmonic is high, maximum LCF tends to lead minimum SST by ~15–30 days such that clouds can amplify the SST annual cycle, especially when LCF maxima coexist with insolation minima. Monthly mean LCF tends to scale with ω 500 exponentially over the convective margins and offshore of the Pacific Northwest, but daily climatology relationships indicate that LCF levels off and even diminishes for ω 500 > 0.05 Pa s−1, suggesting a limit through, perhaps, a too strong suppression of boundary layer heights. This suggests the need for dynamic-regime analysis in diagnosing low cloud/circulation feedbacks.
Abstract
A better understanding of multiscale interactions within the Madden–Julian oscillation (MJO), including momentum exchanges, is critical for improved MJO prediction skill. In this study, convective momentum transport (CMT) associated with the MJO is analyzed based on the NOAA Climate Forecast System Reanalysis (CFSR). A three-layer vertical structure associated with the MJO, as previously suggested in the mesoscale momentum tendency profile based on global cloud-resolving model simulations, is evident in the subgrid-scale momentum tendency from the CFSR. Positive (negative) subgrid-scale momentum tendency anomalies are found near the surface, negative (positive) anomalies are found in the low to midtroposphere, and positive (negative) anomalies in the upper troposphere are found within and to the west (east) of the MJO convection. This tends to damp the MJO circulation in the free atmosphere, while enhancing MJO winds near the surface. In addition, it could also reduce the MJO eastward propagation speed and lead to the backward tilt with height in the observed MJO structure through a secondary circulation near the MJO center. Further analyses illustrate that this three-layer vertical structure in subgrid-scale momentum tendency largely balances the grid-scale momentum transport of the zonal wind component u, mainly through the transport of seasonal mean u by the MJO-scale vertical motion. Synoptic-scale systems, which were previously proposed to be essential for the u-momentum transport of the MJO, however, are found to play a minor role for the total grid-scale momentum tendency. The above momentum tendency structure is also confirmed with the ECMWF analysis for the Year of Tropical Convection (YOTC) that lends confidence to these above results based on the CFSR.
Abstract
A better understanding of multiscale interactions within the Madden–Julian oscillation (MJO), including momentum exchanges, is critical for improved MJO prediction skill. In this study, convective momentum transport (CMT) associated with the MJO is analyzed based on the NOAA Climate Forecast System Reanalysis (CFSR). A three-layer vertical structure associated with the MJO, as previously suggested in the mesoscale momentum tendency profile based on global cloud-resolving model simulations, is evident in the subgrid-scale momentum tendency from the CFSR. Positive (negative) subgrid-scale momentum tendency anomalies are found near the surface, negative (positive) anomalies are found in the low to midtroposphere, and positive (negative) anomalies in the upper troposphere are found within and to the west (east) of the MJO convection. This tends to damp the MJO circulation in the free atmosphere, while enhancing MJO winds near the surface. In addition, it could also reduce the MJO eastward propagation speed and lead to the backward tilt with height in the observed MJO structure through a secondary circulation near the MJO center. Further analyses illustrate that this three-layer vertical structure in subgrid-scale momentum tendency largely balances the grid-scale momentum transport of the zonal wind component u, mainly through the transport of seasonal mean u by the MJO-scale vertical motion. Synoptic-scale systems, which were previously proposed to be essential for the u-momentum transport of the MJO, however, are found to play a minor role for the total grid-scale momentum tendency. The above momentum tendency structure is also confirmed with the ECMWF analysis for the Year of Tropical Convection (YOTC) that lends confidence to these above results based on the CFSR.
Abstract
Owing to its profound influences on global energy balance, accurate representation of low cloud variability in climate models is an urgent need for future climate projection. In the present study, marine low cloud variability on intraseasonal time scales is characterized, with a particular focus over the Pacific basin during boreal summer and its association with the dominant mode of tropical intraseasonal variability (TISV) over the eastern Pacific (EPAC) intertropical convergence zone (ITCZ). Analyses indicate that, when anomalous TISV convection is enhanced over the elongated EPAC ITCZ, reduction of low cloud fraction (LCF) is evident over a vast area of the central North Pacific. Subsequently, when the enhanced TISV convection migrates to the northern part of the EPAC warm pool, a “comma shaped” pattern of reduced LCF prevails over the subtropical North Pacific, along with a pronounced reduction of LCF present over the southeast Pacific (SEPAC). Further analyses indicate that surface latent heat fluxes and boundary heights induced by anomalous low-level circulation through temperature advection and changes of total wind speed, as well as midlevel vertical velocity associated with the EPAC TISV, could be the most prominent factors in regulating the intraseasonal variability of LCF over the North Pacific. For the SEPAC, temperature anomalies at the top of the boundary inversion layer between 850 and 800 hPa play a critical role in the local LCF intraseasonal variations. Results presented in this study provide not only improved understanding of variability of marine low clouds and the underlying physics, but also a prominent benchmark in constraining and evaluating the representation of low clouds in climate models.
Abstract
Owing to its profound influences on global energy balance, accurate representation of low cloud variability in climate models is an urgent need for future climate projection. In the present study, marine low cloud variability on intraseasonal time scales is characterized, with a particular focus over the Pacific basin during boreal summer and its association with the dominant mode of tropical intraseasonal variability (TISV) over the eastern Pacific (EPAC) intertropical convergence zone (ITCZ). Analyses indicate that, when anomalous TISV convection is enhanced over the elongated EPAC ITCZ, reduction of low cloud fraction (LCF) is evident over a vast area of the central North Pacific. Subsequently, when the enhanced TISV convection migrates to the northern part of the EPAC warm pool, a “comma shaped” pattern of reduced LCF prevails over the subtropical North Pacific, along with a pronounced reduction of LCF present over the southeast Pacific (SEPAC). Further analyses indicate that surface latent heat fluxes and boundary heights induced by anomalous low-level circulation through temperature advection and changes of total wind speed, as well as midlevel vertical velocity associated with the EPAC TISV, could be the most prominent factors in regulating the intraseasonal variability of LCF over the North Pacific. For the SEPAC, temperature anomalies at the top of the boundary inversion layer between 850 and 800 hPa play a critical role in the local LCF intraseasonal variations. Results presented in this study provide not only improved understanding of variability of marine low clouds and the underlying physics, but also a prominent benchmark in constraining and evaluating the representation of low clouds in climate models.
Abstract
Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a simple nudging technique toward observations. Using the real-time multivariate MJO (RMM) index as a predictand, it is demonstrated that the MJO prediction skill can reach out to 27 days before the anomaly correlation coefficient (ACC) decreases to 0.5. The MJO forecast skill also shows relatively larger contrasts between target strong and weak cases (32 versus 7 days) than between initially strong and weak cases (29 versus 24 days). Meanwhile, a strong dependence on target phases is found, as opposed to relative skill independence from different initial phases. The MJO prediction skill is also shown to be about 29 days during the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/CINDY) field campaign period. This model’s potential predictability, the upper bound of prediction skill, extends out to 42 days, revealing a considerable unutilized predictability and a great potential for improving current MJO prediction.
Abstract
Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a simple nudging technique toward observations. Using the real-time multivariate MJO (RMM) index as a predictand, it is demonstrated that the MJO prediction skill can reach out to 27 days before the anomaly correlation coefficient (ACC) decreases to 0.5. The MJO forecast skill also shows relatively larger contrasts between target strong and weak cases (32 versus 7 days) than between initially strong and weak cases (29 versus 24 days). Meanwhile, a strong dependence on target phases is found, as opposed to relative skill independence from different initial phases. The MJO prediction skill is also shown to be about 29 days during the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/CINDY) field campaign period. This model’s potential predictability, the upper bound of prediction skill, extends out to 42 days, revealing a considerable unutilized predictability and a great potential for improving current MJO prediction.
Abstract
In this study, detailed characteristics of the leading intraseasonal variability mode of boreal winter surface air temperature (SAT) over the North American (NA) sector are investigated. This intraseasonal SAT mode, characterized by two anomalous centers with an opposite sign—one over central NA and another over east Siberia (ES)/Alaska—bears a great resemblance to the “warm Arctic–cold continent” pattern of the interannual SAT variability over NA. This intraseasonal SAT mode and associated circulation exert a pronounced influence on regional weather extremes, including precipitation over the northwest coast of NA, sea ice concentration over the Chukchi and Bering Seas, and extreme warm and cold events over the NA continent and Arctic region. Surface warming and cooling signals of the intraseasonal SAT mode are connected to temperature anomalies in a deep-tropospheric layer up to 300 hPa with a decreasing amplitude with altitude. Particularly, a coupling between the troposphere and stratosphere is found during evolution of the intraseasonal SAT variability, although whether the stratospheric processes are essential in sustaining the leading intraseasonal SAT mode is difficult to determine based on observations alone. Two origins of wave sources are identified in contributing to vertically propagating planetary waves near Alaska: one over ES/Alaska associated with local intraseasonal variability and another from the subtropical North Pacific via Rossby wave trains induced by tropical convective activity over the western Pacific, possibly associated with the Madden–Julian oscillation.
Abstract
In this study, detailed characteristics of the leading intraseasonal variability mode of boreal winter surface air temperature (SAT) over the North American (NA) sector are investigated. This intraseasonal SAT mode, characterized by two anomalous centers with an opposite sign—one over central NA and another over east Siberia (ES)/Alaska—bears a great resemblance to the “warm Arctic–cold continent” pattern of the interannual SAT variability over NA. This intraseasonal SAT mode and associated circulation exert a pronounced influence on regional weather extremes, including precipitation over the northwest coast of NA, sea ice concentration over the Chukchi and Bering Seas, and extreme warm and cold events over the NA continent and Arctic region. Surface warming and cooling signals of the intraseasonal SAT mode are connected to temperature anomalies in a deep-tropospheric layer up to 300 hPa with a decreasing amplitude with altitude. Particularly, a coupling between the troposphere and stratosphere is found during evolution of the intraseasonal SAT variability, although whether the stratospheric processes are essential in sustaining the leading intraseasonal SAT mode is difficult to determine based on observations alone. Two origins of wave sources are identified in contributing to vertically propagating planetary waves near Alaska: one over ES/Alaska associated with local intraseasonal variability and another from the subtropical North Pacific via Rossby wave trains induced by tropical convective activity over the western Pacific, possibly associated with the Madden–Julian oscillation.
Abstract
An L2 regularized logistic regression model is developed in this study to predict weekly tropical cyclone (TC) genesis over the western North Pacific (WNP) Ocean and subregions of the WNP including the South China Sea (SCS), the western WNP (WWNP), and the eastern WNP (EWNP). The potential predictors for the TC genesis model include a time-varying TC genesis climatology, the Madden–Julian oscillation (MJO), the quasi-biweekly oscillation (QBWO), and ENSO. The relative importance of the predictors in a constructed L2 regression model is justified by a forward stepwise selection procedure for each region from a 0-week to a 7-week lead. Cross-validated hindcasts are then generated for the corresponding prediction schemes out to a 7-week lead. The TC genesis climatology generally improves the regional model skill, and the importance of intraseasonal oscillations and ENSO is regionally dependent. Over the WNP, there is increased model skill over the time-varying climatology in predicting weekly TC genesis out to a 4-week lead by including the MJO and QBWO, whereas ENSO has a limited impact. On a regional scale, ENSO and then either the MJO or QBWO are the two most important predictors over the EWNP and WWNP after the TC genesis climatology. The MJO is found to be the most important predictor over the SCS. The logistic regression model is shown to have comparable reliability and forecast skill scores to the ECMWF dynamical model on intraseasonal time scales.
Significance Statement
Skillful forecasts of tropical cyclone activity on time scales from short-range to seasonal are now issued operationally. Although there has been great progress in the understanding of physical mechanisms driving tropical cyclone (TC) activity, intraseasonal prediction of TCs remains a significant scientific challenge. This study develops a statistically based intraseasonal model to predict weekly TC genesis over the western North Pacific Ocean basin. The intraseasonal prediction model developed here for TC genesis over the western North Pacific basin shows skill extending out to four weeks. We discuss the regional dependence of the model skill on ENSO and other subseasonal climate oscillations. This approach provides skillful intraseasonal forecasting of TCs over the western North Pacific basin.
Abstract
An L2 regularized logistic regression model is developed in this study to predict weekly tropical cyclone (TC) genesis over the western North Pacific (WNP) Ocean and subregions of the WNP including the South China Sea (SCS), the western WNP (WWNP), and the eastern WNP (EWNP). The potential predictors for the TC genesis model include a time-varying TC genesis climatology, the Madden–Julian oscillation (MJO), the quasi-biweekly oscillation (QBWO), and ENSO. The relative importance of the predictors in a constructed L2 regression model is justified by a forward stepwise selection procedure for each region from a 0-week to a 7-week lead. Cross-validated hindcasts are then generated for the corresponding prediction schemes out to a 7-week lead. The TC genesis climatology generally improves the regional model skill, and the importance of intraseasonal oscillations and ENSO is regionally dependent. Over the WNP, there is increased model skill over the time-varying climatology in predicting weekly TC genesis out to a 4-week lead by including the MJO and QBWO, whereas ENSO has a limited impact. On a regional scale, ENSO and then either the MJO or QBWO are the two most important predictors over the EWNP and WWNP after the TC genesis climatology. The MJO is found to be the most important predictor over the SCS. The logistic regression model is shown to have comparable reliability and forecast skill scores to the ECMWF dynamical model on intraseasonal time scales.
Significance Statement
Skillful forecasts of tropical cyclone activity on time scales from short-range to seasonal are now issued operationally. Although there has been great progress in the understanding of physical mechanisms driving tropical cyclone (TC) activity, intraseasonal prediction of TCs remains a significant scientific challenge. This study develops a statistically based intraseasonal model to predict weekly TC genesis over the western North Pacific Ocean basin. The intraseasonal prediction model developed here for TC genesis over the western North Pacific basin shows skill extending out to four weeks. We discuss the regional dependence of the model skill on ENSO and other subseasonal climate oscillations. This approach provides skillful intraseasonal forecasting of TCs over the western North Pacific basin.
Abstract
Prior studies have emphasized the influence of the boreal summer intraseasonal oscillation (BSISO) on basin-scale and global-scale tropical cyclones (TCs). An improved understanding of the BSISO’s impact on TCs at various climate time scales will likely lead to improved subseasonal-to-seasonal prediction. This study explores the impact of BSISO interannual variability on western North Pacific (WNP) TCs. We find that interannual meridional variability in the BSISO modulates the meridional migration of WNP TC genesis and is related to changes in BSISO phase structure. These structural changes are characterized by occurrence frequency changes for individual BSISO phases between the equatorial region over the eastern Indian Ocean (EIO)–Maritime Continent (MC) and the subtropical region over the South China Sea (SCS)–western Pacific. This interannual north–south change of the BSISO appears to be associated with changes in sea surface temperature over the MC region and WNP mid-to-low-tropospheric moisture advection, mainly via remote forcing of a Gill-type Rossby response to BSISO convection and a large meridional asymmetry of the low-level background moisture distribution. During years with increased BSISO residence time over the subtropical SCS–western Pacific, more TCs occur over the northern WNP due to TC-favorable BSISO-associated convection and circulation. In contrast, more TCs occur over the southern WNP in years with increased BSISO convection residence time over the equatorial EIO–MC. We find that the increase in frequency of BSISO phase occurrence over the subtropical SCS–western Pacific since the late 1990s has potentially contributed to a recent poleward shift of WNP TC genesis.
Abstract
Prior studies have emphasized the influence of the boreal summer intraseasonal oscillation (BSISO) on basin-scale and global-scale tropical cyclones (TCs). An improved understanding of the BSISO’s impact on TCs at various climate time scales will likely lead to improved subseasonal-to-seasonal prediction. This study explores the impact of BSISO interannual variability on western North Pacific (WNP) TCs. We find that interannual meridional variability in the BSISO modulates the meridional migration of WNP TC genesis and is related to changes in BSISO phase structure. These structural changes are characterized by occurrence frequency changes for individual BSISO phases between the equatorial region over the eastern Indian Ocean (EIO)–Maritime Continent (MC) and the subtropical region over the South China Sea (SCS)–western Pacific. This interannual north–south change of the BSISO appears to be associated with changes in sea surface temperature over the MC region and WNP mid-to-low-tropospheric moisture advection, mainly via remote forcing of a Gill-type Rossby response to BSISO convection and a large meridional asymmetry of the low-level background moisture distribution. During years with increased BSISO residence time over the subtropical SCS–western Pacific, more TCs occur over the northern WNP due to TC-favorable BSISO-associated convection and circulation. In contrast, more TCs occur over the southern WNP in years with increased BSISO convection residence time over the equatorial EIO–MC. We find that the increase in frequency of BSISO phase occurrence over the subtropical SCS–western Pacific since the late 1990s has potentially contributed to a recent poleward shift of WNP TC genesis.
Abstract
The occurrence of diurnal afternoon convection in Taiwan undergoes substantial modulation from tropical intraseasonal oscillations in the western North Pacific, including the quasi-biweekly (QBW) mode. By analyzing surface station observations and the Climate Forecast System (CFS) Reanalyses (CFSR), as well as the NCEP CFS version 2 (CFSv2) reforecast data over 18 summers from 1993 to 2010, it was found that the QBW mode plays a significant role in the formation of episodic diurnal convection. When the cyclonic circulation of the QBW mode is located west of Taiwan, followed by an anticyclonic circulation to the east, Taiwan's diurnal convection activity tends to intensify and persists for about 4–7 days. Synoptically, this situation reflects the enhanced subtropical anticyclone leading to fair weather conditions and increased monsoon southwesterly winds moistening the lower troposphere, all of which are conducive to thermally induced diurnal convection in Taiwan. The opposite situation tends to suppress the diurnal convection activity for a sustained period of time. Based upon this synoptic linkage, an empirical relationship between the precipitation diurnal amplitude and low-level circulation fields of the CFSv2 is derived. It was found that the CFSv2 forecast exhibits an effective lead time ranging from 16 to 24 days for the QBW mode and, subsequently, diurnal convection episodes in Taiwan.
Abstract
The occurrence of diurnal afternoon convection in Taiwan undergoes substantial modulation from tropical intraseasonal oscillations in the western North Pacific, including the quasi-biweekly (QBW) mode. By analyzing surface station observations and the Climate Forecast System (CFS) Reanalyses (CFSR), as well as the NCEP CFS version 2 (CFSv2) reforecast data over 18 summers from 1993 to 2010, it was found that the QBW mode plays a significant role in the formation of episodic diurnal convection. When the cyclonic circulation of the QBW mode is located west of Taiwan, followed by an anticyclonic circulation to the east, Taiwan's diurnal convection activity tends to intensify and persists for about 4–7 days. Synoptically, this situation reflects the enhanced subtropical anticyclone leading to fair weather conditions and increased monsoon southwesterly winds moistening the lower troposphere, all of which are conducive to thermally induced diurnal convection in Taiwan. The opposite situation tends to suppress the diurnal convection activity for a sustained period of time. Based upon this synoptic linkage, an empirical relationship between the precipitation diurnal amplitude and low-level circulation fields of the CFSv2 is derived. It was found that the CFSv2 forecast exhibits an effective lead time ranging from 16 to 24 days for the QBW mode and, subsequently, diurnal convection episodes in Taiwan.