Search Results

You are looking at 21 - 30 of 30 items for :

  • Author or Editor: Xianan Jiang x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Baoqiang Xiang
,
Ming Zhao
,
Xianan Jiang
,
Shian-Jiann Lin
,
Tim Li
,
Xiouhua Fu
, and
Gabriel Vecchi

Abstract

Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a simple nudging technique toward observations. Using the real-time multivariate MJO (RMM) index as a predictand, it is demonstrated that the MJO prediction skill can reach out to 27 days before the anomaly correlation coefficient (ACC) decreases to 0.5. The MJO forecast skill also shows relatively larger contrasts between target strong and weak cases (32 versus 7 days) than between initially strong and weak cases (29 versus 24 days). Meanwhile, a strong dependence on target phases is found, as opposed to relative skill independence from different initial phases. The MJO prediction skill is also shown to be about 29 days during the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/CINDY) field campaign period. This model’s potential predictability, the upper bound of prediction skill, extends out to 42 days, revealing a considerable unutilized predictability and a great potential for improving current MJO prediction.

Full access
Weina Guan
,
Xianan Jiang
,
Xuejuan Ren
,
Gang Chen
,
Pu Lin
, and
Hai Lin

Abstract

In this study, detailed characteristics of the leading intraseasonal variability mode of boreal winter surface air temperature (SAT) over the North American (NA) sector are investigated. This intraseasonal SAT mode, characterized by two anomalous centers with an opposite sign—one over central NA and another over east Siberia (ES)/Alaska—bears a great resemblance to the “warm Arctic–cold continent” pattern of the interannual SAT variability over NA. This intraseasonal SAT mode and associated circulation exert a pronounced influence on regional weather extremes, including precipitation over the northwest coast of NA, sea ice concentration over the Chukchi and Bering Seas, and extreme warm and cold events over the NA continent and Arctic region. Surface warming and cooling signals of the intraseasonal SAT mode are connected to temperature anomalies in a deep-tropospheric layer up to 300 hPa with a decreasing amplitude with altitude. Particularly, a coupling between the troposphere and stratosphere is found during evolution of the intraseasonal SAT variability, although whether the stratospheric processes are essential in sustaining the leading intraseasonal SAT mode is difficult to determine based on observations alone. Two origins of wave sources are identified in contributing to vertically propagating planetary waves near Alaska: one over ES/Alaska associated with local intraseasonal variability and another from the subtropical North Pacific via Rossby wave trains induced by tropical convective activity over the western Pacific, possibly associated with the Madden–Julian oscillation.

Open access
Haikun Zhao
,
Ying Lu
,
Xianan Jiang
,
Philip J. Klotzbach
,
Liguang Wu
, and
Jian Cao

Abstract

An L2 regularized logistic regression model is developed in this study to predict weekly tropical cyclone (TC) genesis over the western North Pacific (WNP) Ocean and subregions of the WNP including the South China Sea (SCS), the western WNP (WWNP), and the eastern WNP (EWNP). The potential predictors for the TC genesis model include a time-varying TC genesis climatology, the Madden–Julian oscillation (MJO), the quasi-biweekly oscillation (QBWO), and ENSO. The relative importance of the predictors in a constructed L2 regression model is justified by a forward stepwise selection procedure for each region from a 0-week to a 7-week lead. Cross-validated hindcasts are then generated for the corresponding prediction schemes out to a 7-week lead. The TC genesis climatology generally improves the regional model skill, and the importance of intraseasonal oscillations and ENSO is regionally dependent. Over the WNP, there is increased model skill over the time-varying climatology in predicting weekly TC genesis out to a 4-week lead by including the MJO and QBWO, whereas ENSO has a limited impact. On a regional scale, ENSO and then either the MJO or QBWO are the two most important predictors over the EWNP and WWNP after the TC genesis climatology. The MJO is found to be the most important predictor over the SCS. The logistic regression model is shown to have comparable reliability and forecast skill scores to the ECMWF dynamical model on intraseasonal time scales.

Significance Statement

Skillful forecasts of tropical cyclone activity on time scales from short-range to seasonal are now issued operationally. Although there has been great progress in the understanding of physical mechanisms driving tropical cyclone (TC) activity, intraseasonal prediction of TCs remains a significant scientific challenge. This study develops a statistically based intraseasonal model to predict weekly TC genesis over the western North Pacific Ocean basin. The intraseasonal prediction model developed here for TC genesis over the western North Pacific basin shows skill extending out to four weeks. We discuss the regional dependence of the model skill on ENSO and other subseasonal climate oscillations. This approach provides skillful intraseasonal forecasting of TCs over the western North Pacific basin.

Full access
Shufen Zhang
,
Haikun Zhao
,
Philip J. Klotzbach
,
Xianan Jiang
,
Guosen Chen
, and
Shaohua Chen

Abstract

Prior studies have emphasized the influence of the boreal summer intraseasonal oscillation (BSISO) on basin-scale and global-scale tropical cyclones (TCs). An improved understanding of the BSISO’s impact on TCs at various climate time scales will likely lead to improved subseasonal-to-seasonal prediction. This study explores the impact of BSISO interannual variability on western North Pacific (WNP) TCs. We find that interannual meridional variability in the BSISO modulates the meridional migration of WNP TC genesis and is related to changes in BSISO phase structure. These structural changes are characterized by occurrence frequency changes for individual BSISO phases between the equatorial region over the eastern Indian Ocean (EIO)–Maritime Continent (MC) and the subtropical region over the South China Sea (SCS)–western Pacific. This interannual north–south change of the BSISO appears to be associated with changes in sea surface temperature over the MC region and WNP mid-to-low-tropospheric moisture advection, mainly via remote forcing of a Gill-type Rossby response to BSISO convection and a large meridional asymmetry of the low-level background moisture distribution. During years with increased BSISO residence time over the subtropical SCS–western Pacific, more TCs occur over the northern WNP due to TC-favorable BSISO-associated convection and circulation. In contrast, more TCs occur over the southern WNP in years with increased BSISO convection residence time over the equatorial EIO–MC. We find that the increase in frequency of BSISO phase occurrence over the subtropical SCS–western Pacific since the late 1990s has potentially contributed to a recent poleward shift of WNP TC genesis.

Restricted access
Xianan Jiang
,
Eric D. Maloney
,
Jui-Lin F. Li
, and
Duane E. Waliser

Abstract

As a key component of tropical atmospheric variability, intraseasonal variability (ISV) over the eastern North Pacific Ocean (ENP) exerts pronounced influences on regional weather and climate. Since general circulation models (GCMs) are essential tools for prediction and projection of future climate, current model deficiencies in representing this important variability leave us greatly disadvantaged in studies and prediction of climate change. In this study, the authors have assessed model fidelity in representing ENP ISV by analyzing 16 GCMs participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Among the 16 CMIP5 GCMs examined in this study, only seven GCMs capture the spatial pattern of the leading ENP ISV mode relatively well, although even these GCMs exhibit biases in simulating ISV amplitude. Analyses indicate that model fidelity in representing ENP ISV is closely associated with the ability to simulate a realistic summer mean state. The presence of westerly or weak mean easterly winds over the ENP warm pool region could be conducive to more realistic simulations of the ISV. One hypothesis to explain this relationship is that a realistic mean state could produce the correct sign of surface flux anomalies relative to the ISV convection, which helps to destabilize local intraseasonal disturbances. The projected changes in characteristics of ENP ISV under the representative concentration pathway 8.5 (RCP8.5) projection scenario are also explored based on simulations from three CMIP5 GCMs. Results suggest that, in a future climate, the amplitude of ISV could be enhanced over the southern part of the ENP while reduced over the northern ENP off the coast of Mexico/Central America and the Caribbean.

Full access
Xianan Jiang
,
Baoqiang Xiang
,
Ming Zhao
,
Tim Li
,
Shian-Jiann Lin
,
Zhuo Wang
, and
Jan-Huey Chen

Abstract

Motivated by increasing demand in the community for intraseasonal predictions of weather extremes, predictive skill of tropical cyclogenesis is investigated in this study based on a global coupled model system. Limited intraseasonal cyclogenesis prediction skill with a high false alarm rate is found when averaged over about 600 tropical cyclones (TCs) over global oceans from 2003 to 2013, particularly over the North Atlantic (NA). Relatively skillful genesis predictions with more than 1-week lead time are only evident for about 10% of the total TCs. Further analyses suggest that TCs with relatively higher genesis skill are closely associated with the Madden–Julian oscillation (MJO) and tropical synoptic waves, with their geneses strongly phase-locked to the convectively active region of the MJO and low-level cyclonic vorticity associated with synoptic-scale waves. Moreover, higher cyclogenesis prediction skill is found for TCs that formed during the enhanced periods of strong MJO episodes than those during weak or suppressed MJO periods. All these results confirm the critical role of the MJO and tropical synoptic waves for intraseasonal prediction of TC activity. Tropical cyclogenesis prediction skill in this coupled model is found to be closely associated with model predictability of several large-scale dynamical and thermodynamical fields. Particularly over the NA, higher predictability of low-level relative vorticity, midlevel humidity, and vertical zonal wind shear is evident along a tropical belt from the West Africa coast to the Caribbean Sea, in accord with more predictable cyclogenesis over this region. Over the extratropical NA, large-scale variables exhibit less predictability due to influences of extratropical systems, leading to poor cyclogenesis predictive skill.

Full access
Bin Wang
,
Sun-Seon Lee
,
Duane E. Waliser
,
Chidong Zhang
,
Adam Sobel
,
Eric Maloney
,
Tim Li
,
Xianan Jiang
, and
Kyung-Ja Ha

Abstract

Realistic simulations of the Madden–Julian oscillation (MJO) by global climate models (GCMs) remain a great challenge. To evaluate GCM simulations of the MJO, the U.S. CLIVAR MJO Working Group developed a standardized set of diagnostics, providing a comprehensive assessment of statistical properties of the MJO. Here, a suite of complementary diagnostics has been developed that provides discrimination and assessment of MJO simulations based on the perception that the MJO propagation has characteristic dynamic and thermodynamic structures. The new dynamics-oriented diagnostics help to evaluate whether a model produces eastward-propagating MJOs for the right reasons. The diagnostics include 1) the horizontal structure of boundary layer moisture convergence (BLMC) that moistens the lower troposphere to the east of a convection center, 2) the preluding eastward propagation of BLMC that leads the propagation of MJO precipitation by about 5 days, 3) the horizontal structure of 850-hPa zonal wind and its equatorial asymmetry (Kelvin easterly versus Rossby westerly intensity), 4) the equatorial vertical–longitudinal structure of the equivalent potential temperature and convective instability index that reflects the premoistening and predestabilization processes, 5) the equatorial vertical–longitudinal distribution of diabatic heating that reflects the multicloud structure of the MJO, 6) the upper-level divergence that reflects the influence of stratiform cloud heating, and 7) the MJO available potential energy generation that reflects the amplification and propagation of an MJO. The models that simulate better three-dimensional dynamic and thermodynamic structures of MJOs generally reproduce better eastward propagations. This evaluation identifies a number of shortcomings in representing dynamical and heating processes relevant to the MJO simulation and reveals potential sources of the shortcomings.

Open access
Xianan Jiang
,
Duane E. Waliser
,
William S. Olson
,
Wei-Kuo Tao
,
Tristan S. L’Ecuyer
,
Jui-Lin Li
,
Baijun Tian
,
Yuk L. Yung
,
Adrian M. Tompkins
,
Stephen E. Lang
, and
Mircea Grecu

Abstract

The Madden–Julian oscillation (MJO) is a fundamental mode of the tropical atmosphere variability that exerts significant influence on global climate and weather systems. Current global circulation models, unfortunately, are incapable of robustly representing this form of variability. Meanwhile, a well-accepted and comprehensive theory for the MJO is still elusive. To help address this challenge, recent emphasis has been placed on characterizing the vertical structures of the MJO. In this study, the authors analyze vertical heating structures by utilizing recently updated heating estimates based on the Tropical Rainfall Measuring Mission (TRMM) from two different latent heating estimates and one radiative heating estimate. Heating structures from two different versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses/forecasts are also examined. Because of the limited period of available datasets at the time of this study, the authors focus on the winter season from October 1998 to March 1999.

The results suggest that diabatic heating associated with the MJO convection in the ECMWF outputs exhibits much stronger amplitude and deeper structures than that in the TRMM estimates over the equatorial eastern Indian Ocean and western Pacific. Further analysis illustrates that this difference might be due to stronger convective and weaker stratiform components in the ECMWF estimates relative to the TRMM estimates, with the latter suggesting a comparable contribution by the stratiform and convective counterparts in contributing to the total rain rate. Based on the TRMM estimates, it is also illustrated that the stratiform fraction of total rain rate varies with the evolution of the MJO. Stratiform rain ratio over the Indian Ocean is found to be 5% above (below) average for the disturbed (suppressed) phase of the MJO. The results are discussed with respect to whether these heating estimates provide enough convergent information to have implications on theories of the MJO and whether they can help validate global weather and climate models.

Full access
Justin Sheffield
,
Suzana J. Camargo
,
Rong Fu
,
Qi Hu
,
Xianan Jiang
,
Nathaniel Johnson
,
Kristopher B. Karnauskas
,
Seon Tae Kim
,
Jim Kinter
,
Sanjiv Kumar
,
Baird Langenbrunner
,
Eric Maloney
,
Annarita Mariotti
,
Joyce E. Meyerson
,
J. David Neelin
,
Sumant Nigam
,
Zaitao Pan
,
Alfredo Ruiz-Barradas
,
Richard Seager
,
Yolande L. Serra
,
De-Zheng Sun
,
Chunzai Wang
,
Shang-Ping Xie
,
Jin-Yi Yu
,
Tao Zhang
, and
Ming Zhao

Abstract

This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.

Full access
Eric D. Maloney
,
Suzana J. Camargo
,
Edmund Chang
,
Brian Colle
,
Rong Fu
,
Kerrie L. Geil
,
Qi Hu
,
Xianan Jiang
,
Nathaniel Johnson
,
Kristopher B. Karnauskas
,
James Kinter
,
Benjamin Kirtman
,
Sanjiv Kumar
,
Baird Langenbrunner
,
Kelly Lombardo
,
Lindsey N. Long
,
Annarita Mariotti
,
Joyce E. Meyerson
,
Kingtse C. Mo
,
J. David Neelin
,
Zaitao Pan
,
Richard Seager
,
Yolande Serra
,
Anji Seth
,
Justin Sheffield
,
Julienne Stroeve
,
Jeanne Thibeault
,
Shang-Ping Xie
,
Chunzai Wang
,
Bruce Wyman
, and
Ming Zhao

Abstract

In part III of a three-part study on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, the authors examine projections of twenty-first-century climate in the representative concentration pathway 8.5 (RCP8.5) emission experiments. This paper summarizes and synthesizes results from several coordinated studies by the authors. Aspects of North American climate change that are examined include changes in continental-scale temperature and the hydrologic cycle, extremes events, and storm tracks, as well as regional manifestations of these climate variables. The authors also examine changes in the eastern North Pacific and North Atlantic tropical cyclone activity and North American intraseasonal to decadal variability, including changes in teleconnections to other regions of the globe. Projected changes are generally consistent with those previously published for CMIP3, although CMIP5 model projections differ importantly from those of CMIP3 in some aspects, including CMIP5 model agreement on increased central California precipitation. The paper also highlights uncertainties and limitations based on current results as priorities for further research. Although many projected changes in North American climate are consistent across CMIP5 models, substantial intermodel disagreement exists in other aspects. Areas of disagreement include projections of changes in snow water equivalent on a regional basis, summer Arctic sea ice extent, the magnitude and sign of regional precipitation changes, extreme heat events across the northern United States, and Atlantic and east Pacific tropical cyclone activity.

Full access