Search Results

You are looking at 21 - 24 of 24 items for :

  • Author or Editor: Zev Levin x
  • Refine by Access: All Content x
Clear All Modify Search
Stiring A. Colgate
,
Zev Levin
, and
Albert G. Petschek

Abstract

The numerical calculations of the combined stochastic growth and induction charging due to drop interactions by Scott and Levin (1975) are analyzed in terms of a phenomenological model. The assumed initial drop size distribution which is concentrated around 20 μm radius evolves at one point in time to a two–peaked distribution at 20 and 150–200 μm, respectively. We show that when this two–peaked distribution occurs, the charging by the polarizationndash;induction mechanism is powerful enough to overcome the several charge reduction mechanisms and to make the actual charge a significant fraction (>1/3) of the saturated charge for a wide range of parameters. The saturation charge is defined as the charge carried on the particle so that no charge will be separated on the average in subsequent interactions as long as the field remains the same. Also, using the actual charge, one predicts in agreement with the numerical calculations what range of parameters permits a full 7–8 e–folds (e 7e 8) of electric field growth to take place before the small droplets are depleted.

Full access
Lorraine A. Remer
,
Yoram J. Kaufman
,
Zev Levin
, and
Steven Ghan

Abstract

The new generation of satellite sensors such as the moderate resolution imaging spectroradiometer (MODIS) will be able to detect and characterize global aerosols with an unprecedented accuracy. The question remains whether this accuracy will be sufficient to narrow the uncertainties in estimates of aerosol radiative forcing at the top of the atmosphere. The discussion is narrowed to cloud-free direct forcing. Satellite remote sensing detects aerosol with the least amount of relative error when aerosol loading is high. Satellites are less effective when aerosol loading is low. The monthly mean results of two global aerosol transport models are used to simulate the spatial distribution of smoke aerosol in the Southern Hemisphere during the tropical biomass burning season. This spatial distribution allows us to determine that 87%–94% of the smoke aerosol forcing at the top of the atmosphere occurs in grid squares with sufficient signal-to-noise ratio to be detectable from space. The uncertainty of quantifying the smoke aerosol forcing in the Southern Hemisphere depends on the uncertainty introduced by errors in estimating the background aerosol, errors resulting from uncertainties in surface properties, and errors resulting from uncertainties in assumptions of aerosol properties. These three errors combine to give overall uncertainties of 1.2 to 2.2 W m−2 (16%–60%) in determining the Southern Hemisphere smoke aerosol forcing at the top of the atmosphere. Residual cloud contamination uncertainty is not included in these estimates. Strategies that use the satellite data to derive flux directly or use the data in conjunction with ground-based remote sensing and aerosol transport models can reduce these uncertainties.

Full access
Orit Altaratz
,
Zev Levin
,
Yoav Yair and
, and
Baruch Ziv

Abstract

This paper presents a study of the characteristics of lightning activity during the Cyprus low winter storms over the eastern coast of the Mediterranean. The focus is on changes in the nature of thunderstorms crossing the coastline from the sea into the northern and central parts of Israel, as manifested in their electrical activity. It is based on the Lightning Position and Tracking System (LPATS) measurements of lightning ground strikes during four winter seasons between 1995 and 1999. The spatial distribution shows a maximum of lightning ground strikes over Mount Carmel, possibly due to its topographical forcing. The annual variation shows a major maximum in January with two minor peaks, one in November and another in March, which can be explained by changes in the static instability of the atmosphere throughout the rainy period. The average fraction of positive ground flashes was found to be 6% and their average peak current +41 kA. The average peak current of negative ground flashes was −27 kA.

Larger frequencies of ground flashes were detected over the sea than over land during the study period. This is probably due to the large heat and humidity fluxes from the sea surface, which destabilize the colder air above and drive cloud convection. The annual distribution shows that during midwinter (December–January–February) there is higher flash density over the sea, while during autumn and spring the flash density is similar above the two regions.

The diurnal variation shows that the maximum in maritime lightning activity was at 0500 LST and over land at 1300 LST. The mean peak current of positive ground flashes was higher over land and of negative ground flashes, over the sea.

Full access
Paul J. DeMott
,
Ottmar Möhler
,
Olaf Stetzer
,
Gabor Vali
,
Zev Levin
,
Markus D. Petters
,
Masataka Murakami
,
Thomas Leisner
,
Ulrich Bundke
,
Holger Klein
,
Zamin A. Kanji
,
Richard Cotton
,
Hazel Jones
,
Stefan Benz
,
Maren Brinkmann
,
Daniel Rzesanke
,
Harald Saathoff
,
Mathieu Nicolet
,
Atsushi Saito
,
Bjorn Nillius
,
Heinz Bingemer
,
Jonathan Abbatt
,
Karin Ardon
,
Eli Ganor
,
Dimitrios G. Georgakopoulos
, and
Clive Saunders

Understanding cloud and precipitation responses to variations in atmospheric aerosols remains an important research topic for improving the prediction of climate. Knowledge is most uncertain, and the potential impact on climate is largest with regard to how aerosols impact ice formation in clouds. In this paper, we show that research on atmospheric ice nucleation, including the development of new measurement systems, is occurring at a renewed and historically unparalleled level. A historical perspective is provided on the methods and challenges of measuring ice nuclei, and the various factors that led to a lull in research efforts during a nearly 20-yr period centered about 30 yr ago. Workshops played a major role in defining critical needs for improving measurements at that time and helped to guide renewed efforts. Workshops were recently revived for evaluating present research progress. We argue that encouraging progress has been made in the consistency of measurements using the present generation of ice nucleation instruments. Through comparison to laboratory cloud simulations, these ice nuclei measurements have provided increased confidence in our ability to quantify primary ice formation by atmospheric aerosols.

Full access