Search Results

You are looking at 21 - 30 of 35 items for

  • Author or Editor: Zhe-Min Tan x
  • Refine by Access: All Content x
Clear All Modify Search
Zhe-Min Tan
,
Fuqing Zhang
,
Richard Rotunno
, and
Chris Snyder

Abstract

Recent papers by the authors demonstrated the possible influence of initial errors of small amplitude and scale on the numerical prediction of the “surprise” snowstorm of 24–25 January 2000. They found that initial errors grew rapidly at scales below 200 km, and that the rapid error growth was dependent on moist processes. In an attempt to generalize these results from a single case study, the present paper studies the error growth in an idealized baroclinic wave amplifying in a conditionally unstable atmosphere. The present results show that without the effects of moisture, there is little error growth in the short-term (0–36 h) forecast error (starting from random noise), even though the basic jet used here produces a rapidly growing synoptic-scale disturbance. With the effect of moisture included, the error is characterized by upscale growth, basically as found by the authors in their study of the numerical prediction of the surprise snowstorm.

Full access
Yan Liu
,
Zhe-Min Tan
, and
Zhaohua Wu

Abstract

Convective response under multiscale forcing is investigated in this study using a month-long cloud-permitting simulation of the MJO. Convective response time scale (τ) is defined as the time lag between moisture convergence and convective heating. Results imply that τ is dependent on spatial and temporal scales of convective systems. Particularly, estimated τ for slowly varying signals (periods above 2.0 days) on the microscale and synoptic scale is about 0 and 0.5 days, corresponding to instantaneous and noninstantaneous responses, respectively. There are two main phases related to the processes of convective response: shallow convection development and shallow-to-deep convection transition. They are controlled by synoptic-scale boundary layer moisture convergence (M) and lower-tropospheric specific humidity (qm ). In the first phase, as qm is small and lags the development of shallow convection, shallow convection occurrence is solely dominated by M (given suitable thermodynamic conditions in the boundary layer). In the second phase, shallow convection further preconditions the atmosphere for shallow-to-deep convection transition by sustaining M and qm through noninstantaneous convection–convergence feedback, i.e., shallow convection drives large-scale circulation that enhances moisture convergence and upward moisture transport. Additionally, eddy moisture upward transport by shallow convection itself (instantaneous convection–convergence feedback) also contributes to an increase of qm . The comparison of the initiation and propagation stages of MJO indicates that τ is shorter in the propagation stage since M and qm are larger therein.

Restricted access
Yuqing Wang
,
Yunjie Rao
,
Zhe-Min Tan
, and
Daria Schönemann

Abstract

The effect of vertical wind shear (VWS) between different pressure levels on TC intensity change is statistically analyzed based on the best track data of tropical cyclones (TCs) in the western North Pacific (WNP) from the Joint Typhoon Warning Center (JTWC) and the ECMWF interim reanalysis (ERA-Interim) data during 1981–2013. Results show that the commonly used VWS measure between 200 and 850 hPa is less representative of the attenuating deep-layer shear effect than that between 300 and 1000 hPa. Moreover, the authors find that the low-level shear between 850 (or 700) and 1000 hPa is more negatively correlated with TC intensity change than any deep-layer shear during the active typhoon season, whereas deep-layer shear turns out to be more influential than low-level shear during the remaining less active seasons. Further analysis covering all seasons exhibits that a TC has a better chance to intensify than to decay when the deep-layer shear is lower than 7–9 m s−1 and the low-level shear is below 2.5 m s−1. The probability for TCs to intensify and undergo rapid intensification (RI) increases with decreasing VWS and increasing sea surface temperature (SST). TCs moving at slow translational speeds (less than 3 m s−1) intensify under relatively weaker VWS than TCs moving at intermediate translational speeds (3–8 m s−1). The probability of RI becomes lower than that of rapid decaying (RD) when the translational speed is larger than 8 m s−1. Most TCs tend to decay when the translational speed is larger than 12 m s−1 regardless of the shear condition.

Full access
Jian-Feng Gu
,
Zhe-Min Tan
, and
Xin Qiu

Abstract

This study investigates the quadrant-by-quadrant evolution of the low-level tangential wind near the eyewall of an idealized simulated mature tropical cyclone embedded in a unidirectional shear flow. It is found that the quadrant-averaged tangential wind in the right-of-shear quadrants weakens continuously, while that in the left-of-shear quadrants experiences a two-stage evolution: a quasi-steady stage followed by a weakening stage after the imposing of vertical wind shear. This leads to a larger weakening rate in the right-of-shear and a stronger jet in the left-of-shear quadrants. The budget analysis shows that the quadrant-dependent evolution of tangential wind is controlled through the balance between the generalized Coriolis force (GCF; i.e., the radial advection of absolute angular momentum) and the advection terms. The steady decreasing of the GCF is primarily responsible for the continuous weakening of jet strength in the right-of-shear quadrants. For the left-of-shear quadrants, the quasi-steady stage is due to the opposite contributions by the enhanced GCF and negative tendency of advections cancelling out each other. The later weakening stage is the result of both the decreased GCF and the negative tangential advection. The combination of storm-relative flows at vortex scale and the convection strength both within and outside the eyewall determines the evolution of boundary layer inflow asymmetries, which in turn results in the change of GCF, leading to the quadrant-dependent evolution of low-level jet strength and thus the overall storm intensity change.

Full access
Zhe-Min Tan
,
Fuqing Zhang
,
Richard Rotunno
, and
Chris Snyder
Full access
Jian-Feng Gu
,
Zhe-Min Tan
, and
Xin Qiu

Abstract

A suite of idealized simulations of tropical cyclones (TCs) with weak to strong vertical wind shear (VWS) imposed during the mature stage was employed to examine the effects of VWS on the inner-core thermodynamics and intensity change of TCs using a three-dimensional full-physics numerical model as well as a budget analysis of moist entropy. For sheared TCs with shear-induced convective asymmetries, VWS tends to reduce moist entropy within the midlevel eyewall and the boundary layer (BL) but supply moist entropy outside the eyewall above the BL. Such changes in moist entropy reduce the radial gradient of moist entropy across the eyewall, resulting in weakening of the TC. Budget analysis showed that the intense eddy fluxes are mainly responsible for the reduction and/or increase in entropy in the sheared TCs. The entropy reduction within the midlevel eyewall is a result of both the radial eddy flux and the vertical eddy flux. These eddy fluxes are effective at introducing low-entropy air into the midlevel eyewall. Accompanying the flushing of midlevel low-entropy air into the BL, there is an increase in moist entropy outside the eyewall above the BL due to the upward transport of moisture from the BL by shear-induced convection. This represents a new potential pathway to further restrain the radial gradient of moist entropy across the eyewall and hence TC intensity in the sheared environmental flow.

Full access
Jian-Feng Gu
,
Zhe-Min Tan
, and
Xin Qiu

Abstract

Recent studies have demonstrated the importance of moist dynamics on the intensification variability of tropical cyclones (TCs) in directional shear flows. Here, we propose that dry dynamics can account for many aspects of the structure change of TCs in moist simulations. The change of vortex tilt with height and time essentially determines the kinematic and thermodynamic structure of TCs experiencing directional shear flows, depending on how the environmental flow rotates with height, that is, in a clockwise (CW) or counterclockwise (CC) fashion. The vortex tilt precesses faster and is closer to the left-of-shear (with respect to the deep-layer shear) region, with a smaller magnitude at equilibrium in CW hodographs than in CC hodographs. The low-level vortex tilt and accordingly more low-level upward motions are ahead of the overall vortex tilt in CW hodographs but are behind the overall vortex tilt in CC hodographs. Such a configuration of vortex tilt in CW hodographs is potentially favorable for the continuous precession of convection into the upshear region but in CC hodographs it is unfavorable. Most of the upward motions within a TC undergoing CW shear are concentrated in the downshear-left region, whereas those in the CC shear are located in the downshear-right region. Moreover, the upward (downward) motions are in phase with positive (negative) local helicity in both CW and CC hodographs. Here, we present an alternative mechanism that is associated with balanced dynamics in response to vortex tilt to explain the coincidence and also the distribution variability of vertical motions, as well as local helicity in directional shear flows. The balanced dynamics could explain the overlap of positive helicity and convection in both moist simulations and observations.

Full access
Jian-Feng Gu
,
Zhe-Min Tan
, and
Xin Qiu

Abstract

The coupling of vortex tilt and convection, and their effects on the intensification variability of tropical cyclones (TCs) in directional shear flows, is investigated in this study. The height-dependent vortex tilt controls TC structural differences in clockwise (CW) and counterclockwise (CC) hodographs during their initial stage of development. Moist convection may enhance the coupling between displaced vortices at different levels and thus reduce the vortex tilt amplitude and enhance precession of the overall vortex tilt during the early stage of development. However, differences in the overall vortex tilt between CW and CC hodographs are further amplified by a feedback from convective heating and therefore result in much higher intensification rates for TCs in CW hodographs than those in CC hodographs. In CW hodographs, convection organization in the left-of-shear region is favored because the low-level vortex tilt is ahead of the overall vortex tilt and the TC moves to the left side of the deep-layer shear. This results in a more humid midtroposphere and stronger surface heat flux on the left side (azimuthally downwind) of the overall vortex tilt, thus providing a positive feedback and supporting continuous precession of the vortex tilt into the upshear-left region. In CC hodographs, convection tends to organize on the right side (azimuthally upwind) of the overall vortex tilt because the low-level vortex tilt is behind the overall vortex tilt and the TC moves to the right side of the deep-layer shear. In addition, convection organizes radially outward near the downshear-right region, which weakens convection within the inner region. These configurations lead to a drier midtroposphere and weaker surface heat flux in the downwind region of the overall vortex tilt and also a broader potential vorticity skirt. As a result, a negative feedback is established that prevents continuous precession of the overall vortex tilt.

Full access
Dingzhu Hu
,
Yi-Peng Guo
,
Zhe-Min Tan
, and
Zhaoyong Guan

Abstract

This study investigates the interannual relationship and the dynamical linkage between the boreal spring Arctic Oscillation (AO) and the Northern Hemisphere Hadley circulation extent (HCE). The spring AO is positively correlated with the HCE, with one standard positive deviation of the AO index corresponding to approximately 0.42° latitude poleward shift of the HCE. The interaction between the planetary wave and the zonal winds over the subtropics results in an anomalous eddy momentum flux divergence, which shifts the HCE poleward. The AO related transient eddy momentum flux divergence makes nearly 2 times larger contributions than those of the stationary component to the HCE change. The increased equatorward transient wave flux over the subtropics is possibly related to the larger meridional gradient of the transient wave refractive index there. The AO positive phase corresponds to an enhanced planetary wave propagation from the midlatitude Atlantic Ocean to the subtropics, which resembles the North Atlantic Oscillation pattern. The autumn and winter AO–HCE relationship is similar to that during spring, while summer has the weakest relationship, which could be mainly attributed to the far poleward extension of the climatological HCE during summer.

Open access
Sijing Ren
,
Lili Lei
,
Zhe-Min Tan
, and
Yi Zhang

Abstract

Ensemble sensitivity is often a diagonal approximation to the multivariate regression, leading to a simple univariate regression. Comparatively, the multivariate ensemble sensitivity retains the full covariance matrix when computing the multivariate regression. The performances of both univariate and multivariate ensemble sensitivities in multiscale flows have not been thoroughly examined, and the demonstration of the latter in realistic applications has been sparse. A high-resolution ensemble forecast of Typhoon Haiyan (2013) is used to examine the performances of the two ensemble sensitivities. Compared to the multivariate sensitivity, the univariate sensitivity overestimates the forecast metric, especially at higher levels. To increase the predicted Haiyan’s intensity, multivariate ensemble sensitivity gives initial perturbations characterized by a warming area around the center of the storm, an increased moisture area around the eyewall, a stronger primary circulation around the radius of maximum wind, and stronger inflow at low levels and stronger outflow at high levels. Perturbed initial condition experiments verify that the predicted response from the multivariate sensitivity is more accurate than that from the univariate sensitivity. Therefore, the ability of multivariate sensitivity to provide more accurate predicted responses than the univariate sensitivity has been demonstrated in a realistic multiscale flow application.

Full access