Search Results

You are looking at 31 - 34 of 34 items for

  • Author or Editor: Axel Timmermann x
  • Refine by Access: All Content x
Clear All Modify Search
Hiroki Tokinaga
,
Shang-Ping Xie
,
Axel Timmermann
,
Shayne McGregor
,
Tomomichi Ogata
,
Hisayuki Kubota
, and
Yuko M. Okumura

Abstract

Regional patterns of tropical Indo-Pacific climate change are investigated over the last six decades based on a synthesis of in situ observations and ocean model simulations, with a focus on physical consistency among sea surface temperature (SST), cloud, sea level pressure (SLP), surface wind, and subsurface ocean temperature. A newly developed bias-corrected surface wind dataset displays westerly trends over the western tropical Pacific and easterly trends over the tropical Indian Ocean, indicative of a slowdown of the Walker circulation. This pattern of wind change is consistent with that of observed SLP change showing positive trends over the Maritime Continent and negative trends over the central equatorial Pacific. Suppressed moisture convergence over the Maritime Continent is largely due to surface wind changes, contributing to observed decreases in marine cloudiness and land precipitation there.

Furthermore, observed ocean mixed layer temperatures indicate a reduction in zonal contrast in the tropical Indo-Pacific characterized by larger warming in the tropical eastern Pacific and western Indian Ocean than in the tropical western Pacific and eastern Indian Ocean. Similar changes are successfully simulated by an ocean general circulation model forced with the bias-corrected wind stress. Whereas results from major SST reconstructions show no significant change in zonal gradient in the tropical Indo-Pacific, both bucket-sampled SSTs and nighttime marine air temperatures (NMAT) show a weakening of the zonal gradient consistent with the subsurface temperature changes. All these findings from independent observations provide robust evidence for ocean–atmosphere coupling associated with the reduction in the Walker circulation over the last six decades.

Full access
Soon-Il An
,
Yoo-Geun Ham
,
Jong-Seong Kug
,
Axel Timmermann
,
Jung Choi
, and
In-Sik Kang

Abstract

The influence of the tropical Pacific annual-mean state on the annual-cycle amplitude and El Niño–Southern Oscillation (ENSO) variability is studied using the Max Planck Institute for Meteorology coupled general circulation model (CGCM) ECHAM5/Max Planck Institute Ocean Model (MPI-OM1). In a greenhouse warming experiment, an intensified annual cycle of sea surface temperature (SST) in the eastern tropical Pacific is associated with reduced ENSO variability, and vice versa.

Analysis showed that the annual-mean states, especially the surface warming in the western Pacific and the thermocline deepening in the central Pacific, which is concurrent with the strong annual cycle, act to suppress ENSO amplitude and to intensify the annual-cycle amplitude, and vice versa. The western Pacific warming acts to reduce air–sea coupling strength and to shorten the ocean adjustment time scale, and the deepening of central Pacific thermocline acts to diminish vertical advection of the anomalous ocean temperature by the annual-mean upwelling. Consequently, ENSO activity is suppressed by the annual-mean states during the strong annual-cycle decades, and the opposite case associated with the weak annual-cycle decades is also true. Furthermore, the time integration of an intermediate ENSO model forced with different background state configurations, and a stability analysis of its linearized version, show that annual-mean background states during the weak (strong) annual-cycle decades are characterized by an enhanced (reduced) linear growth rate of ENSO or similarly large (small) variability of ENSO. However, the annual-cycle component of the background state changes cannot significantly modify ENSO variability.

Using a hybrid coupled model, it is demonstrated that diagnosed annual-mean background states corresponding to a reduced (enhanced) annual cycle suppress (enhance) the development of the annual cycle of SST in the eastern equatorial Pacific, mainly through the weakening (intensifying) of zonal temperature advection of annual-mean SST by the annual-cycle zonal current. The above results support the idea that climate background state changes control both ENSO and the annual-cycle amplitude in opposing ways.

Full access
Ryohei Yamaguchi
,
Ji-Eun Kim
,
Keith B. Rodgers
,
Karl Stein
,
Axel Timmermann
,
Sun-Seon Lee
,
Lei Huang
,
Malte F. Stuecker
,
John T. Fasullo
,
Gokhan Danabasoglu
,
Clara Deser
,
Jean-Francois Lamarque
,
Nan A. Rosenbloom
, and
Jim Edwards

Abstract

Biomass burning aerosol (BBA) emissions in the Coupled Model Intercomparison Project phase 6 (CMIP6) historical forcing fields have enhanced temporal variability during the years 1997–2014 compared to earlier periods. Recent studies document that the corresponding inhomogeneous shortwave forcing over this period can cause changes in clouds, permafrost, and soil moisture, which contribute to a net terrestrial Northern Hemisphere warming relative to earlier periods. Here, we investigate the ocean response to the hemispherically asymmetric warming, using a 100-member ensemble of the Community Earth System Model version 2 Large Ensemble forced by two different BBA emissions (CMIP6 default and temporally smoothed over 1990–2020). Differences between the two subensemble means show that ocean temperature anomalies occur during periods of high BBA variability and subsequently persist over multiple decades. In the North Atlantic, surface warming is efficiently compensated for by decreased northward oceanic heat transport due to a slowdown of the Atlantic meridional overturning circulation. In the North Pacific, surface warming is compensated for by an anomalous cross-equatorial cell (CEC) that reduces northward oceanic heat transport. The heat that converges in the South Pacific through the anomalous CEC is shunted into the subsurface and contributes to formation of long-lasting ocean temperature anomalies. The anomalous CEC is maintained through latitude-dependent contributions from narrow western boundary currents and basinwide near-surface Ekman transport. These results indicate that interannual variability in forcing fields may significantly change the background climate state over long time scales, presenting a potential uncertainty in CMIP6-class climate projections forced without interannual variability.

Open access
Arthur J. Miller
,
Michael A. Alexander
,
George J. Boer
,
Fei Chai
,
Ken Denman
,
David J. Erickson III
,
Robert Frouin
,
Albert J. Gabric
,
Edward A. Laws
,
Marlon R. Lewis
,
Zhengyu Liu
,
Ragu Murtugudde
,
Shoichiro Nakamoto
,
Douglas J. Neilson
,
Joel R. Norris
,
J. Carter Ohlmann
,
R. Ian Perry
,
Niklas Schneider
,
Karen M. Shell
, and
Axel Timmermann
Full access