Search Results
You are looking at 31 - 34 of 34 items for
- Author or Editor: Barbara G. Brown x
- Refine by Access: All Content x
Abstract
The Southeast Atmosphere Studies (SAS), which included the Southern Oxidant and Aerosol Study (SOAS); the Southeast Nexus (SENEX) study; and the Nitrogen, Oxidants, Mercury and Aerosols: Distributions, Sources and Sinks (NOMADSS) study, was deployed in the field from 1 June to 15 July 2013 in the central and eastern United States, and it overlapped with and was complemented by the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. SAS investigated atmospheric chemistry and the associated air quality and climate-relevant particle properties. Coordinated measurements from six ground sites, four aircraft, tall towers, balloon-borne sondes, existing surface networks, and satellites provide in situ and remotely sensed data on trace-gas composition, aerosol physicochemical properties, and local and synoptic meteorology. Selected SAS findings indicate 1) dramatically reduced NOx concentrations have altered ozone production regimes; 2) indicators of “biogenic” secondary organic aerosol (SOA), once considered part of the natural background, were positively correlated with one or more indicators of anthropogenic pollution; and 3) liquid water dramatically impacted particle scattering while biogenic SOA did not. SAS findings suggest that atmosphere–biosphere interactions modulate ambient pollutant concentrations through complex mechanisms and feedbacks not yet adequately captured in atmospheric models. The SAS dataset, now publicly available, is a powerful constraint to develop predictive capability that enhances model representation of the response and subsequent impacts of changes in atmospheric composition to changes in emissions, chemistry, and meteorology.
Abstract
The Southeast Atmosphere Studies (SAS), which included the Southern Oxidant and Aerosol Study (SOAS); the Southeast Nexus (SENEX) study; and the Nitrogen, Oxidants, Mercury and Aerosols: Distributions, Sources and Sinks (NOMADSS) study, was deployed in the field from 1 June to 15 July 2013 in the central and eastern United States, and it overlapped with and was complemented by the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. SAS investigated atmospheric chemistry and the associated air quality and climate-relevant particle properties. Coordinated measurements from six ground sites, four aircraft, tall towers, balloon-borne sondes, existing surface networks, and satellites provide in situ and remotely sensed data on trace-gas composition, aerosol physicochemical properties, and local and synoptic meteorology. Selected SAS findings indicate 1) dramatically reduced NOx concentrations have altered ozone production regimes; 2) indicators of “biogenic” secondary organic aerosol (SOA), once considered part of the natural background, were positively correlated with one or more indicators of anthropogenic pollution; and 3) liquid water dramatically impacted particle scattering while biogenic SOA did not. SAS findings suggest that atmosphere–biosphere interactions modulate ambient pollutant concentrations through complex mechanisms and feedbacks not yet adequately captured in atmospheric models. The SAS dataset, now publicly available, is a powerful constraint to develop predictive capability that enhances model representation of the response and subsequent impacts of changes in atmospheric composition to changes in emissions, chemistry, and meteorology.
Abstract
The Convective Precipitation Experiment (COPE) was a joint U.K.–U.S. field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly as a result of the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the United States. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve numerical weather prediction (NWP) model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the U.K. BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several days. A new fast-scanning X-band dual-polarization Doppler radar made 360° volume scans over 10 elevation angles approximately every 5 min and was augmented by two Met Office C-band radars and the Chilbolton S-band radar. Detailed aerosol measurements were made on the aircraft and on the ground. This paper i) provides an overview of the COPE field campaign and the resulting dataset, ii) presents examples of heavy convective rainfall in clouds containing ice and also in relatively shallow clouds through the warm rain process alone, and iii) explains how COPE data will be used to improve high-resolution NWP models for operational use.
Abstract
The Convective Precipitation Experiment (COPE) was a joint U.K.–U.S. field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly as a result of the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the United States. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve numerical weather prediction (NWP) model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the U.K. BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several days. A new fast-scanning X-band dual-polarization Doppler radar made 360° volume scans over 10 elevation angles approximately every 5 min and was augmented by two Met Office C-band radars and the Chilbolton S-band radar. Detailed aerosol measurements were made on the aircraft and on the ground. This paper i) provides an overview of the COPE field campaign and the resulting dataset, ii) presents examples of heavy convective rainfall in clouds containing ice and also in relatively shallow clouds through the warm rain process alone, and iii) explains how COPE data will be used to improve high-resolution NWP models for operational use.
Abstract
Forecasts by mid-2015 for a strong El Niño during winter 2015/16 presented an exceptional scientific opportunity to accelerate advances in understanding and predictions of an extreme climate event and its impacts while the event was ongoing. Seizing this opportunity, the National Oceanic and Atmospheric Administration (NOAA) initiated an El Niño Rapid Response (ENRR), conducting the first field campaign to obtain intensive atmospheric observations over the tropical Pacific during El Niño.
The overarching ENRR goal was to determine the atmospheric response to El Niño and the implications for predicting extratropical storms and U.S. West Coast rainfall. The field campaign observations extended from the central tropical Pacific to the West Coast, with a primary focus on the initial tropical atmospheric response that links El Niño to its global impacts. NOAA deployed its Gulfstream-IV (G-IV) aircraft to obtain observations around organized tropical convection and poleward convective outflow near the heart of El Niño. Additional tropical Pacific observations were obtained by radiosondes launched from Kiritimati , Kiribati, and the NOAA ship Ronald H. Brown, and in the eastern North Pacific by the National Aeronautics and Space Administration (NASA) Global Hawk unmanned aerial system. These observations were all transmitted in real time for use in operational prediction models. An X-band radar installed in Santa Clara, California, helped characterize precipitation distributions. This suite supported an end-to-end capability extending from tropical Pacific processes to West Coast impacts. The ENRR observations were used during the event in operational predictions. They now provide an unprecedented dataset for further research to improve understanding and predictions of El Niño and its impacts.
Abstract
Forecasts by mid-2015 for a strong El Niño during winter 2015/16 presented an exceptional scientific opportunity to accelerate advances in understanding and predictions of an extreme climate event and its impacts while the event was ongoing. Seizing this opportunity, the National Oceanic and Atmospheric Administration (NOAA) initiated an El Niño Rapid Response (ENRR), conducting the first field campaign to obtain intensive atmospheric observations over the tropical Pacific during El Niño.
The overarching ENRR goal was to determine the atmospheric response to El Niño and the implications for predicting extratropical storms and U.S. West Coast rainfall. The field campaign observations extended from the central tropical Pacific to the West Coast, with a primary focus on the initial tropical atmospheric response that links El Niño to its global impacts. NOAA deployed its Gulfstream-IV (G-IV) aircraft to obtain observations around organized tropical convection and poleward convective outflow near the heart of El Niño. Additional tropical Pacific observations were obtained by radiosondes launched from Kiritimati , Kiribati, and the NOAA ship Ronald H. Brown, and in the eastern North Pacific by the National Aeronautics and Space Administration (NASA) Global Hawk unmanned aerial system. These observations were all transmitted in real time for use in operational prediction models. An X-band radar installed in Santa Clara, California, helped characterize precipitation distributions. This suite supported an end-to-end capability extending from tropical Pacific processes to West Coast impacts. The ENRR observations were used during the event in operational predictions. They now provide an unprecedented dataset for further research to improve understanding and predictions of El Niño and its impacts.
The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model.
A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety of ground-based remote-sensing instruments, numerous rawinsondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP.
This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.
The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model.
A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety of ground-based remote-sensing instruments, numerous rawinsondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP.
This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.