Search Results

You are looking at 31 - 33 of 33 items for :

  • Author or Editor: Chris Snyder x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Chris Snyder
,
David J. Muraki
,
Riwal Plougonven
, and
Fuqing Zhang

Abstract

Vortex dipoles provide a simple representation of localized atmospheric jets. Numerical simulations of a synoptic-scale dipole in surface potential temperature are considered in a rotating, stratified fluid with approximately uniform potential vorticity. Following an initial period of adjustment, the dipole propagates along a slightly curved trajectory at a nearly steady rate and with a nearly fixed structure for more than 50 days. Downstream from the jet maximum, the flow also contains smaller-scale, upward-propagating inertia–gravity waves that are embedded within and stationary relative to the dipole. The waves form elongated bows along the leading edge of the dipole. Consistent with propagation in horizontal deformation and vertical shear, the waves’ horizontal scale shrinks and the vertical slope varies as they approach the leading stagnation point in the dipole’s flow. Because the waves persist for tens of days despite explicit dissipation in the numerical model that would otherwise damp the waves on a time scale of a few hours, they must be inherent features of the dipole itself, rather than remnants of imbalances in the initial conditions. The wave amplitude varies with the strength of the dipole, with waves becoming obvious once the maximum vertical vorticity in the dipole is roughly half the Coriolis parameter. Possible mechanisms for the wave generation are spontaneous wave emission and the instability of the underlying balanced dipole.

Full access
Thomas M. Hamill
,
Jeffrey S. Whitaker
,
Jeffrey L. Anderson
, and
Chris Snyder
Full access
William C. Skamarock
,
Sang-Hun Park
,
Joseph B. Klemp
, and
Chris Snyder

Abstract

Kinetic energy (KE) spectra derived from global high-resolution atmospheric simulations from the Model for Prediction Across Scales (MPAS) are presented. The simulations are produced using quasi-uniform global Voronoi horizontal meshes with 3-, 7.5-, and 15-km mean cell spacings. KE spectra from the MPAS simulations compare well with observations and other simulations in the literature and possess the canonical KE spectra structure including a very-well-resolved shallow-sloped mesoscale region in the 3-km simulation. There is a peak in the vertical velocity variance at the model filter scale for all simulations, indicating the underresolved nature of updrafts even with the 3-km mesh. The KE spectra reveal that the MPAS configuration produces an effective model resolution (filter scale) of approximately 6Δx. Comparison with other published model KE spectra highlight model filtering issues, specifically insufficient filtering that can lead to spectral blocking and the production of erroneous shallow-sloped mesoscale tails in the KE spectra. The mesoscale regions in the MPAS KE spectra are produced without use of kinetic energy backscatter, in contrast to other results reported in the literature. No substantive difference is found in KE spectra computed on constant height or constant pressure surfaces. Stratified turbulence is not resolved with the vertical resolution used in this study; hence, the results do not support recent conjecture that stratified turbulence explains the mesoscale portion of the KE spectrum.

Full access