Search Results

You are looking at 31 - 40 of 61 items for

  • Author or Editor: Christian D. Kummerow x
  • Refine by Access: All Content x
Clear All Modify Search
Clément Guilloteau, Efi Foufoula-Georgiou, Christian D. Kummerow, and Veljko Petković

Abstract

The scattering of microwaves at frequencies between 50 and 200 GHz by ice particles in the atmosphere is an essential element in the retrieval of instantaneous surface precipitation from spaceborne passive radiometers. This paper explores how the variable distribution of solid and liquid hydrometeors in the atmospheric column over land surfaces affects the brightness temperature (TB) measured by GMI at 89 GHz through the analysis of Dual-Frequency Precipitation Radar (DPR) reflectivity profiles along the 89-GHz beam. The objective is to refine the statistical relations between observed TBs and surface precipitation over land and to define their limits. As GMI is scanning with a 53° Earth incident angle, the observed atmospheric volume is actually not a vertical column, which may lead to very heterogeneous and seemingly inconsistent distributions of the hydrometeors inside the beam. It is found that the 89-GHz TB is mostly sensitive to the presence of ice hydrometeors several kilometers above the 0°C isotherm, up to 10 km above the 0°C isotherm for the deepest convective systems, but is a modest predictor of the surface precipitation rate. To perform a precise mapping of atmospheric ice, the altitude of the individual ice clusters must be known. Indeed, if variations in the altitude of ice are not accounted for, then the high incident angle of GMI causes a horizontal shift (parallax shift) between the estimated position of the ice clusters and their actual position. We show here that the altitude of ice clusters can be derived from the 89-GHz TB itself, allowing for correction of the parallax shift.

Open access
Janice L. Bytheway, Christian D. Kummerow, and Curtis Alexander

Abstract

The High Resolution Rapid Refresh (HRRR) model has been the National Weather Service’s (NWS) operational rapid update model since 2014. The HRRR has undergone continual development, including updates to the Weather Research and Forecasting (WRF) Model core, the data assimilation system, and the various physics packages in order to better represent atmospheric processes, with updated operational versions of the model being implemented approximately every spring. Given the model’s intent for use in convective precipitation forecasting, it is of interest to examine how forecasts of warm season precipitation have changed as a result of the continued model upgrades. A features-based assessment is performed on the first 6 h of HRRR quantitative precipitation forecasts (QPFs) from the 2013, 2014, and 2015 versions of the model over the U.S. central plains in an effort to understand how specific aspects of QPF performance have evolved as a result of continued model development. Significant bias changes were found with respect to precipitation intensity. Model upgrades that increased boundary layer stability and reduced the strength of the latent heating perturbations in the data assimilation were found to reduce southward biases in convective initiation, reduce the tendency for the model to overestimate heavy rainfall, and improve the representation of convective initiation.

Full access
David S. Henderson, Christian D. Kummerow, and David A. Marks

Abstract

Ground radar rainfall, necessary for satellite rainfall product (e.g., TRMM and GPM) ground validation (GV) studies, is often retrieved using annual or climatological convective/stratiform Z–R relationships. Using the Kwajalein, Republic of the Marshall Islands (RMI), polarimetric S-band weather radar (KPOL) and gauge network during the 2009 and 2011 wet seasons, the robustness of such rain-rate relationships is assessed through comparisons with rainfall retrieved using relationships that vary as a function of precipitation regime, defined as shallow convection, isolated deep convection, and deep organized convection. It is found that the TRMM-GV 2A53 rainfall product underestimated rain gauges by −8.3% in 2009 and −13.1% in 2011, where biases are attributed to rainfall in organized precipitation regimes. To further examine these biases, 2A53 GV rain rates are compared with polarimetrically tuned rain rates, in which GV biases are found to be minimized when rain relationships are developed for each precipitation regime, where, for example, during the 2009 wet-season biases in isolated deep precipitation regimes were reduced from −16.3% to −4.7%. The regime-based improvements also exist when specific convective and stratiform Z–R relationships are developed as a function of precipitation regime, where negative biases in organized convective events (−8.7%) are reduced to −1.6% when a regime-based Z–R is implemented. Negative GV biases during the wet seasons lead to an underestimation in accumulated rainfall when compared with ground gauges, suggesting that satellite-related bias estimates could be underestimated more than originally described. Such results encourage the use of the large-scale precipitation regime along with their respective locally characterized convective or stratiform classes in precipitation validation endeavors and in development of Z–R rainfall relationships.

Full access
Yasutaka Murakami, Christian D. Kummerow, and Susan C. van den Heever

Abstract

Precipitation processes play a critical role in the longevity and spatial distribution of stratocumulus clouds through their interaction with the vertical profiles of humidity and temperature within the atmospheric boundary layer. One of the difficulties in understanding these processes is the limited amount of observational data. In this study, robust relations among liquid water path (LWP), cloud droplet number concentration (Nd) and cloud base rain rate (Rcb) from three subtropical stratocumulus decks are obtained from A-Train satellite observations in order to obtain a broad perspective on warm rain processes. Rcb has a positive correlation with LWP/Nd and the increase of Rcb becomes larger as LWP/Nd increases. However, the increase of Rcb with respect to LWP/Nd becomes more gradual in regions with larger Nd, which indicates the relation is moderated by Nd. These results are consistent with our theoretical understanding of warm rain processes and suggest that satellite observations are capable of elucidating the average manner of how precipitation processes are modulated by LWP and Nd. The sensitivity of the auto-conversion rate to Nd is investigated by examining pixels with small LWP in which the accretion process is assumed to have little influence on Rcb. The upper limit of the dependency of auto-conversion rate on Nd is assessed from the relation between Rcb and Nd, since the sensitivity is exaggerated by the accretion process, and was found to be a cloud droplet number concentration to the power of −1.44 ± 0.12.

Restricted access
Matthew D. Lebsock, Christian Kummerow, and Graeme L. Stephens

Abstract

Anomalies of precipitation, cloud, thermodynamic, and radiation variables are analyzed on the large spatial scale defined by the tropical oceans. In particular, relationships between the mean tropical oceanic precipitation anomaly and radiative anomalies are examined. It is found that tropical mean precipitation is well correlated with cloud properties and radiative fields. In particular, the tropical mean precipitation anomaly is positively correlated with the top of the atmosphere reflected shortwave anomaly and negatively correlated with the emitted longwave anomaly. The tropical mean relationships are found to primarily result from a coherent oscillation of precipitation and the area of high-level cloudiness. The correlations manifest themselves radiatively as a modest decrease in net downwelling radiation at the top of the atmosphere, and a redistribution of energy from the surface to the atmosphere through reduced solar radiation to the surface and decreased longwave emission to space. Integrated over the tropical oceanic domain, the anomalous atmospheric column radiative heating is found to be about 10% of the magnitude of the anomalous latent heating. The temporal signature of the radiative heating is observed in the column mean temperature that indicates a coherent phase-lagged oscillation between atmospheric stability and convection. These relationships are identified as a radiative–convective cloud feedback that is observed on intraseasonal time scales in the tropical atmosphere.

Full access
Hirohiko Masunaga, Tristan S. L’Ecuyer, and Christian D. Kummerow

Abstract

A satellite data analysis is performed to explore the Madden–Julian oscillation (MJO) focusing on the potential roles of the equatorial Rossby (ER) and Kelvin waves. Measurements from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and Visible/Infrared Scanner (VIRS) are analyzed in the frequency–wavenumber domain to identify and ultimately filter primary low-frequency modes in the Tropics. The space–time spectrum of deep-storm fraction estimated by PR and VIRS exhibits notable Kelvin wave signals at wavenumbers 5–8, a distinct MJO peak at wavenumbers 1–7 and periods of about 40 days, and a signal corresponding to the ER wave. These modes are separately filtered to study the individual modes and possible relationship among them in the time–longitude space. In 10 cases analyzed here, an MJO event is often collocated with a group of consecutive Kelvin waves as well as an intruding ER wave accompanied with the occasional onset of a stationary convective phase. The spatial and temporal relationship between the MJO and Kelvin wave is clearly visible in a lag composite diagram, while the ubiquity of the ER wave leads to a less pronounced relation between the MJO and ER wave. A case study based on the Geostationary Meteorological Satellite (GMS) imagery together with associated dynamic field captures the substructure of the planetary-scale waves. A cross-correlation analysis confirms the MJO-related cycle that involves surface and atmospheric parameters such as sea surface temperature, water vapor, low clouds, shallow convection, and near-surface wind as proposed in past studies. The findings suggest the possibility that a sequence of convective events coupled with the linear waves may play a critical role in MJO propagation. An intraseasonal radiative–hydrological cycle inherent in the local thermodynamic conditions could be also a potential factor responsible for the MJO by loosely modulating the envelope of the entire propagation system.

Full access
Ye Hong, Christian D. Kummerow, and William S. Olson

Abstract

This paper presents a new scheme that classifies convective and stratiform (C/S) precipitation areas over oceans using microwave brightness temperature. In this scheme, data are first screened to eliminate nonraining pixels. For raining pixels, C/S indices are computed from brightness temperatures and their variability for emission (19 and 37 GHz) and scattering (85 GHz). Since lower-resolution satellite data generally contain mixtures of convective and stratiform precipitation, a probability matching method is employed to relate the C/S index to a convective fraction of precipitation area.

The scheme has been applied on synthetic data generated from a dynamical cloud model and radiative transfer computations to simulate the frequencies and resolutions of the Tropical Rainfall Measuring Mission (TRMM) Microwave (TMI) Imager as well as the Special Sensor Microwave/Imager (SSM/I). The results from simulated TMI data during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment agree very well with the ground-based radar classification maps. The classification accuracy degrades when SSM/I data is used, due largely to the lower spatial resolution of the SSM/I.

The successful launch of TRMM satellite in November 1997 has made it possible to test this scheme on actual TMI data. Preliminary results of TMI derived C/S classification compared with that from the first spaceborne precipitation radar has shown a very good agreement. Further verification and improvement of this scheme are under way.

Full access
Rebecca A. Bolinger, Christian D. Kummerow, and Nolan J. Doesken

Abstract

Previous research has shown that the temperature and precipitation variability in the Upper Colorado River basin (UCRB) is correlated with large-scale climate variability [i.e., El Niño–Southern Oscillation (ENSO) and Pacific decadal oscillation (PDO)]. But this correlation is not very strong, suggesting the need to look beyond the statistics. Looking at monthly contributions across the basin, results show that February is least sensitive to variability, and a wet October could be a good predictor for a wet season. A case study of a wet and a dry year (with similar ENSO/PDO conditions) shows that the occurrence of a few large accumulating events is what drives the seasonal variability, and these large events can happen under a variety of synoptic conditions. Looking at several physical factors that can impact the amount of accumulation in any given event, it is found that large accumulating events (>10 mm in one day) are associated with westerly winds at all levels, higher wind speeds at all levels, and greater amounts of total precipitable water. The most important difference between a large accumulating and small accumulating event is the presence of a strong (>4 m s−1) low-level westerly wind. Because much more emphasis should be given to this more local feature, as opposed to large-scale variability, an accurate seasonal forecast for the basin is not producible at this time.

Full access
Ting-Chi Wu, Milija Zupanski, Lewis D. Grasso, Christian D. Kummerow, and Sid-Ahmed Boukabara

Abstract

Satellite all-sky radiances from the Advanced Technology Microwave Sounder (ATMS) are assimilated into the Hurricane Weather Research and Forecasting (HWRF) Model using the hybrid Gridpoint Statistical Interpolation analysis system (GSI). To extend the all-sky capability recently developed for global applications to HWRF, some modifications in HWRF and GSI are facilitated. In particular, total condensate is added as a control variable, and six distinct hydrometeor habits are added as state variables in hybrid GSI within HWRF. That is, clear-sky together with cloudy and precipitation-affected satellite pixels are assimilated using the Community Radiative Transfer Model (CRTM) as a forward operator that includes hydrometeor information and Jacobians with respect to hydrometeor variables. A single case study with the 2014 Atlantic storm Hurricane Cristobal is used to demonstrate the methodology of extending the global all-sky capability to HWRF due to ATMS data availability. Two data assimilation experiments are carried out. One experiment uses the operational configuration and assimilates ATMS radiances under the clear-sky condition, and the other experiment uses the modified HWRF system and assimilates ATMS radiances under the all-sky condition with the inclusion of total condensate update and cycling. Observed and synthetic Geostationary Operational Environmental Satellite (GOES)-13 data along with Global Precipitation Measurement Mission (GPM) Microwave Imager (GMI) data from the two experiments are used to show that the experiment with all-sky ATMS radiances assimilation has cloud signatures that are supported by observations. In contrast, there is lack of clouds in the initial state that led to a noticeable lag of cloud development in the experiment that assimilates clear-sky radiances.

Full access
Joshua M. King, Christian D. Kummerow, Susan C. van den Heever, and Matthew R. Igel

Abstract

Observed and modeled rainfall occurrence from shallow (warm) maritime clouds and their composite statistical relationships with cloud macrophysical properties are analyzed and directly compared. Rain falls from ~25% of warm, single-layered, maritime clouds observed by CloudSat and from ~27% of the analogous warm clouds simulated within a large-domain, fine-resolution radiative–convective equilibrium experiment performed using the Regional Atmospheric Modeling System (RAMS), with its sophisticated bin-emulating bulk microphysical scheme. While the fractional occurrence of observed and simulated warm rainfall is found to increase with both increasing column-integrated liquid water and cloud depth, calculations of rainfall occurrence as a joint function of these two macrophysical quantities suggest that the modeled bulk cloud-to-rainwater conversion process is more efficient than observations indicate—in agreement with previous research. Unexpectedly and in opposition to the model-derived relationship, deeper CloudSat-observed warm clouds with little column water mass are more likely to rain than their corresponding shallow counterparts, despite having lower cloud-mean water contents. Given that these composite relationships were derived from statically identified warm clouds, an attempt is made to quantitatively explore rainfall occurrence within the context of the warm cloud life cycle. Extending a previously established cloud-top buoyancy analysis technique, it is shown that rainfall likelihoods from positively buoyant RAMS-simulated clouds more closely resemble the surprising observed relationships than do those derived from negatively buoyant simulated clouds. This suggests that relative to the depiction of warm clouds within the RAMS output, CloudSat observes higher proportions of positively buoyant, developing warm clouds.

Full access