Search Results

You are looking at 31 - 32 of 32 items for

  • Author or Editor: David Bodine x
  • Refine by Access: All Content x
Clear All Modify Search
Karen A. Kosiba
,
Anthony W. Lyza
,
Robert J. Trapp
,
Erik N. Rasmussen
,
Matthew Parker
,
Michael I. Biggerstaff
,
Stephen W. Nesbitt
,
Christopher C. Weiss
,
Joshua Wurman
,
Kevin R. Knupp
,
Brice Coffer
,
Vanna C. Chmielewski
,
Daniel T. Dawson
,
Eric Bruning
,
Tyler M. Bell
,
Michael C. Coniglio
,
Todd A. Murphy
,
Michael French
,
Leanne Blind-Doskocil
,
Anthony E. Reinhart
,
Edward Wolff
,
Morgan E. Schneider
,
Miranda Silcott
,
Elizabeth Smith
,
Joshua Aikins
,
Melissa Wagner
,
Paul Robinson
,
James M. Wilczak
,
Trevor White
,
David Bodine
,
Matthew R. Kumjian
,
Sean M. Waugh
,
A. Addison Alford
,
Kim Elmore
,
Pavlos Kollias
, and
David D. Turner

Abstract

Quasi-linear convective systems (QLCSs) are responsible for approximately a quarter of all tornado events in the U.S., but no field campaigns have focused specifically on collecting data to understand QLCS tornadogenesis. The Propagation, Evolution, and Rotation in Linear System (PERiLS) project was the first observational study of tornadoes associated with QLCSs ever undertaken. Participants were drawn from more than 10 universities, laboratories, and institutes, with over 100 students participating in field activities. The PERiLS field phases spanned two years, late winters and early springs of 2022 and 2023, to increase the probability of intercepting significant tornadic QLCS events in a range of large-scale and local environments. The field phases of PERiLS collected data in nine tornadic and nontornadic QLCSs with unprecedented detail and diversity of measurements. The design and execution of the PERiLS field phase and preliminary data and ongoing analyses are shown.

Open access
Pavlos Kollias
,
Greg M. McFarquhar
,
Eric Bruning
,
Paul J. DeMott
,
Matthew R. Kumjian
,
Paul Lawson
,
Zachary Lebo
,
Timothy Logan
,
Kelly Lombardo
,
Mariko Oue
,
Greg Roberts
,
Raymond A. Shaw
,
Susan C. van den Heever
,
Mengistu Wolde
,
Kevin R. Barry
,
David Bodine
,
Roelof Bruintjes
,
Venkatachalam Chandrasekar
,
Andrew Dzambo
,
Thomas C. J. Hill
,
Michael Jensen
,
Francesc Junyent
,
Sonia M. Kreidenweis
,
Katia Lamer
,
Edward Luke
,
Aaron Bansemer
,
Christina McCluskey
,
Leonid Nichman
,
Cuong Nguyen
,
Ryan J. Patnaude
,
Russell J. Perkins
,
Heath Powers
,
Keyvan Ranjbar
,
Eric Roux
,
Jeffrey Snyder
,
Bernat P. Treserras
,
Peisang Tsai
,
Nathan A. Wales
,
Cory Wolff
,
Nithin Allwayin
,
Ben Ascher
,
Jason Barr
,
Yishi Hu
,
Yongjie Huang
,
Miles Litzmann
,
Zackary Mages
,
Katherine McKeown
,
Saurabh Patil
,
Elise Rosky
,
Kristofer Tuftedal
,
Min-Duan Tzeng
, and
Zeen Zhu

Abstract

Convective clouds play an important role in the Earth’s climate system and are a known source of extreme weather. Gaps in our understanding of convective vertical motions, microphysics, and precipitation across a full range of aerosol and meteorological regimes continue to limit our ability to predict the occurrence and intensity of these cloud systems. Towards improving predictability, the National Science Foundation (NSF) sponsored a large field experiment entitled “Experiment of Sea Breeze Convection, Aerosols, Precipitation, and Environment (ESCAPE).” ESCAPE took place between 30 May - 30 Sept. 2022 in the vicinity of Houston, TX because this area frequently experiences isolated deep convection that interacts with the region's mesoscale circulations and its range of aerosol conditions.

ESCAPE focused on collecting observations of isolated deep convection through innovative sampling, and on developing novel analysis techniques. This included the deployment of two research aircraft, the National Research Council of Canada Convair-580 and the Stratton Park Engineering Company Learjet, which combined conducted 24 research flights from 30 May to 17 June. On the ground, three mobile X-band radars, and one mobile Doppler lidar truck equipped with soundings, were deployed from 30 May to 28 June. From 1 August to 30 Sept. 2022, a dual-polarization C-band radar was deployed and operated using a novel, multi-sensor agile adaptive sampling strategy to track the entire lifecycle of isolated convective clouds. Analysis of the ESCAPE observations has already yielded preliminary findings on how aerosols and environmental conditions impact the convective life cycle.

Open access