Search Results

You are looking at 31 - 40 of 51 items for

  • Author or Editor: James L. Franklin x
  • Refine by Access: All Content x
Clear All Modify Search
Barbara G. Brown
,
Louisa B. Nance
,
Christopher L. Williams
,
Kathryn M. Newman
,
James L. Franklin
,
Edward N. Rappaport
,
Paul A. Kucera
, and
Robert L. Gall

Abstract

The Hurricane Forecast Improvement Project (HFIP; renamed the “Hurricane Forecast Improvement Program” in 2017) was established by the U.S. National Oceanic and Atmospheric Administration (NOAA) in 2007 with a goal of improving tropical cyclone (TC) track and intensity predictions. A major focus of HFIP has been to increase the quality of guidance products for these parameters that are available to forecasters at the National Weather Service National Hurricane Center (NWS/NHC). One HFIP effort involved the demonstration of an operational decision process, named Stream 1.5, in which promising experimental versions of numerical weather prediction models were selected for TC forecast guidance. The selection occurred every year from 2010 to 2014 in the period preceding the hurricane season (defined as August–October), and was based on an extensive verification exercise of retrospective TC forecasts from candidate experimental models run over previous hurricane seasons. As part of this process, user-responsive verification questions were identified via discussions between NHC staff and forecast verification experts, with additional questions considered each year. A suite of statistically meaningful verification approaches consisting of traditional and innovative methods was developed to respond to these questions. Two examples of the application of the Stream 1.5 evaluations are presented, and the benefits of this approach are discussed. These benefits include the ability to provide information to forecasters and others that is relevant for their decision-making processes, via the selection of models that meet forecast quality standards and are meaningful for demonstration to forecasters in the subsequent hurricane season; clarification of user-responsive strengths and weaknesses of the selected models; and identification of paths to model improvement.

Significance Statement

The Hurricane Forecast Improvement Project (HFIP) tropical cyclone (TC) forecast evaluation effort led to innovations in TC predictions as well as new capabilities to provide more meaningful and comprehensive information about model performance to forecast users. Such an effort—to clearly specify the needs of forecasters and clarify how forecast improvements should be measured in a “user-oriented” framework—is rare. This project provides a template for one approach to achieving that goal.

Open access
Eric W. Uhlhorn
,
Peter G. Black
,
James L. Franklin
,
Mark Goodberlet
,
James Carswell
, and
Alan S. Goldstein

Abstract

For the first time, the NOAA/Aircraft Operations Center (AOC) flew stepped frequency microwave radiometers (SFMRs) on both WP-3D research aircraft for operational hurricane surface wind speed measurement in 2005. An unprecedented number of major hurricanes provided ample data to evaluate both instrument performance and surface wind speed retrieval quality up to 70 m s−1 (Saffir–Simpson category 5). To this end, a new microwave emissivity–wind speed model function based on estimates of near-surface winds in hurricanes by global positioning system (GPS) dropwindsondes is proposed. For practical purposes, utilizing this function removes a previously documented high bias in moderate SFMR-measured wind speeds (10–50 m s−1), and additionally corrects an extreme wind speed (>60 m s−1) underestimate. The AOC operational SFMRs yield retrievals that are precise to within ∼2% at 30 m s−1, which is a factor of 2 improvement over the NOAA Hurricane Research Division’s SFMR, and comparable to the precision found here for GPS dropwindsonde near-surface wind speeds. A small (1.6 m s−1), but statistically significant, overall high bias was found for independent SFMR measurements utilizing emissivity data not used for model function development. Across the range of measured wind speeds (10–70 m s−1), SFMR 10-s averaged wind speeds are within 4 m s−1 (rms) of the dropwindsonde near-surface estimate, or 5%–25% depending on speed. However, an analysis of eyewall peak wind speeds indicates an overall 2.6 m s−1 GPS low bias relative to the peak SFMR estimate on the same flight leg, suggesting a real increase in the maximum wind speed estimate due to SFMR’s high-density sampling. Through a series of statistical tests, the SFMR is shown to reduce the overall bias in the peak surface wind speed estimate by ∼50% over the current flight-level wind reduction method and is comparable at extreme wind speeds. The updated model function is demonstrated to behave differently below and above the hurricane wind speed threshold (∼32 m s−1), which may have implications for air–sea momentum and kinetic energy exchange. The change in behavior is at least qualitatively consistent with recent laboratory and field results concerning the drag coefficient in high wind speed conditions, which show a fairly clear “leveling off” of the drag coefficient with increased wind speed above ∼30 m s−1. Finally, a composite analysis of historical data indicates that the earth-relative SFMR peak wind speed is typically located in the hurricane’s right-front quadrant, which is consistent with previous observational and theoretical studies of surface wind structure.

Full access
Richard D. Knabb
,
Lixion A. Avila
,
John L. Beven
,
James L. Franklin
,
Richard J. Pasch
, and
Stacy R. Stewart

Abstract

The 2005 eastern North Pacific hurricane season is summarized, the individual tropical cyclones are described, and official track and intensity forecasts are verified and evaluated. The season’s overall activity was, by most measures, below average. While a near-average 15 tropical storms formed, many of them were relatively weak and short-lived. Seven of these storms became hurricanes, but only one reached major hurricane status (an intensity of 100 kt or greater on the Saffir–Simpson hurricane scale) in the eastern North Pacific basin. One of the hurricanes, Adrian, approached Central America in May but weakened to a tropical depression prior to landfall. Adrian was the only eastern North Pacific tropical cyclone to make landfall during 2005, and it was directly responsible for one fatality.

Full access
John L. Beven II
,
Stacy R. Stewart
,
Miles B. Lawrence
,
Lixion A. Avila
,
James L. Franklin
, and
Richard J. Pasch

Abstract

Activity during the 2001 hurricane season was similar to that of the 2000 season. Fifteen tropical storms developed, with nine becoming hurricanes and four major hurricanes. Two tropical depressions failed to become tropical storms. Similarities to the 2000 season include overall activity much above climatological levels and most of the cyclones occurring over the open Atlantic north of 25°N. The overall “lateness” of the season was notable, with 11 named storms, including all the hurricanes, forming after 1 September. There were no hurricane landfalls in the United States for the second year in a row. However, the season's tropical cyclones were responsible for 93 deaths, including 41 from Tropical Storm Allison in the United States, and 48 from Hurricanes Iris and Michelle in the Caribbean.

Full access
James L. Franklin
,
Lixion A. Avila
,
John L. Beven II
,
Miles B. Lawrence
,
Richard J. Pasch
, and
Stacy R. Stewart

Abstract

The 2002 eastern North Pacific hurricane season is summarized and the year's tropical cyclones are described. The season featured 12 named tropical storms, of which 6 became hurricanes. Five of the six hurricanes reached an intensity of 100 kt or higher. There were two landfalling cyclones, Tropical Storm Julio and Hurricane Kenna. Kenna, which made landfall near San Blas, Mexico, with winds of near 120 kt, was responsible for four deaths.

Full access
Lixion A. Avila
,
Richard J. Pasch
,
Jack L. Beven
,
James L. Franklin
,
Miles B. Lawrence
,
Stacy R. Stewart
, and
Jiann-Gwo Jiing

Abstract

The 2001 eastern North Pacific hurricane season is reviewed. It was a near-average season in terms of the number of systems, with 15 named tropical cyclones of which 8 became hurricanes. One tropical cyclone made landfall in Mexico and two reached category 3 or higher on the Saffir–Simpson hurricane scale. A description of each named cyclone is provided, and track and intensity forecasts for the season are evaluated.

Full access
Richard J. Pasch
,
Miles B. Lawrence
,
Lixion A. Avila
,
John L. Beven
,
James L. Franklin
, and
Stacy R. Stewart

Abstract

The 2002 Atlantic hurricane season is summarized. Although the season's total of 12 named storms was above normal, many of these were weak and short-lived. Eight of the named cyclones made landfall in the United States, including Lili, the first hurricane to hit the United States in nearly 3 yr.

Full access
John L. Beven II
,
Lixion A. Avila
,
James L. Franklin
,
Miles B. Lawrence
,
Richard J. Pasch
, and
Stacy R. Stewart

Abstract

The tropical cyclone activity for 2003 in the eastern North Pacific hurricane basin is summarized. Activity during 2003 was slightly below normal. Sixteen tropical storms developed, seven of which became hurricanes. However, there were no major hurricanes in the basin for the first time since 1977. The first hurricane did not form until 24 August, the latest observed first hurricane at least since reliable satellite observations began in 1966. Five tropical cyclones made landfall on the Pacific coast of Mexico, resulting in 14 deaths.

Full access
Miles B. Lawrence
,
Lixion A. Avila
,
John L. Beven
,
James L. Franklin
,
Richard J. Pasch
, and
Stacy R. Stewart

Abstract

The 2003 Atlantic hurricane season is described. The season was very active, with 16 tropical storms, 7 of which became hurricanes. There were 49 deaths directly attributed to this year’s tropical cyclones.

Full access
Miles B. Lawrence
,
Lixion A. Avila
,
Jack L. Beven
,
James L. Franklin
,
Richard J. Pasch
, and
Stacy R. Stewart

Abstract

There were 11 tropical storms, 6 hurricanes, and 2 tropical depressions during the 2000 eastern North Pacific hurricane season. Two tropical storms made landfall in Mexico.

Full access