Search Results

You are looking at 31 - 40 of 54 items for

  • Author or Editor: Jidong Gao x
  • Refine by Access: All Content x
Clear All Modify Search
Haiqin Chen
,
Jidong Gao
,
Tao Sun
,
Yaodeng Chen
,
Yunheng Wang
, and
Jacob T. Carlin

Abstract

The differential reflectivity (Z DR) column is a notable polarimetric signature related to updrafts in deep moist convection. In this study, pseudo–water vapor (qυ ) observations are retrieved from observed Z DR columns under the assumption that humidity is saturated within the convection where Z DR columns are detected, and are then assimilated within the 3DVar framework. The impacts of assimilating pseudo-qυ observations from Z DR columns on short-term severe weather prediction are first evaluated for a squall-line case. Radar data analysis indicates that the Z DR columns are mainly located on the inflow side of the high-reflectivity region. Assimilation of the pseudo-qυ observations leads to an enhancement of qυ within the convection, while concurrently reducing humidity in no-rain areas. Sensitivity experiments indicate that a tuned smaller observation error and a shorter horizontal decorrelation scale are optimal for a better assimilation of pseudo-qυ from Z DR columns, resulting in more stable rain rates during short-term forecasts. Additionally, a 15-min cycling assimilation frequency yields the best performance, providing the most accurate reflectivity forecast in terms of both location and intensity. Analysis of thermodynamic fields reveal that assimilating Z DR columns provides more favorable initial conditions for sustaining convection, including sustainable moisture condition, a strong cold pool, and divergent winds near the surface, consequently enhancing reflectivity and precipitation. With the optimal configuration determined from the sensitivity tests, a quantitative evaluation further demonstrates that assimilating the pseudo-qυ observations from Z DR columns using the 3DVar method can improve the 0–3-h reflectivity and accumulated precipitation predictions of convective storms.

Restricted access
Junjun Hu
,
Alexandre O. Fierro
,
Yunheng Wang
,
Jidong Gao
, and
Edward R. Mansell

Abstract

The recent successful deployment of the Geostationary Lightning Mapper (GLM) on board the Geostationary Operational Environmental Satellite R series (GOES-16/17) provides nearly uniform spatiotemporal measurements of total lightning (intracloud plus cloud to ground) over the Americas and adjacent vast oceanic regions. This study evaluates the potential value of assimilating GLM-derived water vapor mixing ratio on short-term (≤6 h), cloud-scale (dx = 1.5 km) forecasts of five severe weather events over the Great Plains of the United States using a three-dimensional variational (3DVAR) data assimilation (DA) system. Toward a more systematic assimilation of real GLM data, this study conducted sensitivity tests aimed at evaluating the impact of the horizontal decorrelation length scale, DA cycling frequency, and the time window size for accumulating GLM lightning observations prior to the DA. Forecast statistics aggregated over all five cases suggested that an optimal forecast performance is obtained when lightning measurements are accumulated over a 10-min interval and GLM-derived water vapor mixing ratio values are assimilated every 15 min with a horizontal decorrelation length scale of 3 km. This suggested configuration for the GLM DA together with companion experiments (i) not assimilating any data, (ii) assimilating radar data only, and (iii) assimilating both GLM and radar data were evaluated for the same five cases. Overall, GLM data have shown potential to help improve the short-term (<3 h) forecast skill of composite reflectivity fields and individual storm tracks. While this result also held for accumulated rainfall, longer-term (≥3 h) forecasts were generally characterized by noteworthy wet biases.

Free access
Jiafen Hu
,
Jidong Gao
,
Chengsi Liu
,
Guifu Zhang
,
Pamela Heinselman
, and
Jacob T. Carlin

Abstract

Assimilating radar reflectivity into convective-scale NWP models remains a challenging topic in radar data assimilation. A primary reason is that the reflectivity forward observation operator is highly nonlinear. To address this challenge, a power transformation function is applied to the WRF Model’s hydrometeor and water vapor mixing ratio variables in this study. Three 3D variational data assimilation experiments are performed and compared for five high-impact weather events that occurred in 2019: (i) a control experiment that assimilates reflectivity using the original hydrometeor mixing ratios as control variables, (ii) an experiment that assimilates reflectivity using power-transformed hydrometeor mixing ratios as control variables, and (iii) an experiment that assimilates reflectivity and retrieved pseudo–water vapor observations using power-transformed hydrometeor and water vapor mixing ratios (qυ ) as control variables. Both qualitative and quantitative evaluations are performed for 0–3-h forecasts from the five cases. The analysis and forecast performance in the two experiments with power-transformed mixing ratios is better than the control experiment. Notably, the assimilation of pseudo–water vapor with power-transformed qυ as an additional control variable is found to improve the performance of the analysis and short-term forecasts for all cases. In addition, the convergence rate of the cost function minimization for the two experiments that use the power transformation is faster than that of the control experiments.

Significance Statement

The effective use of radar reflectivity observations in any data assimilation scheme remains an important research topic because reflectivity observations explicitly include information about hydrometeors and also implicitly include information about the distribution of moisture within storms. However, it is difficult to assimilate reflectivity because the reflectivity forward observation operator is highly nonlinear. This study seeks to identify a more effective way to assimilate reflectivity into a convective-scale NWP model to improve the accuracy of predictions of high-impact weather events.

Free access
Kristin M. Calhoun
,
Travis M. Smith
,
Darrel M. Kingfield
,
Jidong Gao
, and
David J. Stensrud

Abstract

A weather-adaptive three-dimensional variational data assimilation (3DVAR) system was included in the NOAA Hazardous Weather Testbed as a first step toward introducing warn-on-forecast initiatives into operations. NWS forecasters were asked to incorporate the data in conjunction with single-radar and multisensor products in the Advanced Weather Interactive Processing System (AWIPS) as part of their warning-decision process for real-time events across the United States. During the 2011 and 2012 experiments, forecasters examined more than 36 events, including tornadic supercells, severe squall lines, and multicell storms. Products from the 3DVAR analyses were available to forecasters at 1-km horizontal resolution every 5 min, with a 4–6-min latency, incorporating data from the national Weather Surveillance Radar-1988 Doppler (WSR-88D) network and the North American Mesoscale model. Forecasters found the updraft, vertical vorticity, and storm-top divergence products the most useful for storm interrogation and quickly visualizing storm trends, often using these tools to increase the confidence in a warning decision and/or issue the warning slightly earlier. The 3DVAR analyses were most consistent and reliable when the storm of interest was in close proximity to one of the assimilated WSR-88D, or data from multiple radars were incorporated into the analysis. The latter was extremely useful to forecasters in blending data rather than having to analyze multiple radars separately, especially when range folding obscured the data from one or more radars. The largest hurdle for the real-time use of 3DVAR or similar data assimilation products by forecasters is the data latency, as even 4–6 min reduces the utility of the products when new radar scans are available.

Full access
W. G. Blumberg
,
D. D. Turner
,
S. M. Cavallo
,
Jidong Gao
,
J. Basara
, and
A. Shapiro

Abstract

This study used 20 years of Oklahoma Mesonet data to investigate the changes of near-surface water vapor mixing ratio q υ during the afternoon to evening transition (AET). Similar to past studies, increases in q υ are found to occur near sunset. However, the location, magnitude, and timing of the q υ maximum occurring during the AET are shown to be dependent on the seasonal growth and harvest of vegetation across Oklahoma in the spring and summer months. Particularly, the late spring harvest of winter wheat grown in Oklahoma appears to modify the relative contribution of local and nonlocal processes on q υ . By analyzing time series of q υ during the AET, it is found that the likelihood of a presunset q υ maximum is strongly dependent upon vegetation, soil moisture, wind speed, and cloud cover. Analysis also reveals that the increase in q υ during the AET can increase the parcel conditional instability despite the surface cooling produced by loss of insolation. Next to known changes in low-level wind shear, these changes in instability and moisture demonstrate new ways the AET can modify the presence of the key ingredients relevant to explaining the climatological increase in severe convective storm hazards around sunset.

Full access
Junho Ho
,
Guifu Zhang
,
Petar Bukovcic
,
David B. Parsons
,
Feng Xu
,
Jidong Gao
,
Jacob T. Carlin
, and
Jeffrey C. Snyder

Abstract

Raindrop size distributions (DSD) and rain rate have been estimated from polarimetric radar data using different approaches with the accuracy depending on the errors both in the radar measurements and the estimation methods. Herein, a deep neural network (DNN) technique was utilized to improve the estimation of the DSD and rain rate by mitigating these errors. The performance of this approach was evaluated using measurements from a two-dimensional video disdrometer (2DVD) at the Kessler Atmospheric and Ecological Field Station in Oklahoma as ground truth with the results compared against conventional estimation methods for the period 2006–17. Physical parameters (mass-/volume-weighted diameter and liquid water content), rain rate, and polarimetric radar variables (including radar reflectivity and differential reflectivity) were obtained from the DSD data. Three methods—physics-based inversion, empirical formula, and DNN—were applied to two different temporal domains (instantaneous and rain-event average) with three diverse error assumptions (fitting, measurement, and model errors). The DSD retrievals and rain estimates from 18 cases were evaluated by calculating the bias and root-mean-squared error (RMSE). DNN produced the best performance for most cases, with up to a 5% reduction in RMSE when model errors existed. DSD and rain estimated from a nearby polarimetric radar using the empirical and DNN methods were well correlated with the disdrometer observations; the rain-rate estimate bias of the DNN was significantly reduced (3.3% in DNN vs 50.1% in empirical). These results suggest that DNN has advantages over the physics-based and empirical methods in retrieving rain microphysics from radar observations.

Restricted access
David Bodine
,
Dan Michaud
,
Robert D. Palmer
,
Pamela L. Heinselman
,
Jerry Brotzge
,
Nick Gasperoni
,
Boon Leng Cheong
,
Ming Xue
, and
Jidong Gao

Abstract

This study presents a 2-yr-long comparison of Weather Surveillance Radar-1988 Doppler (WSR-88D) refractivity retrievals with Oklahoma Mesonetwork (“Mesonet”) and sounding measurements and discusses some challenges to implementing radar refractivity operationally. Temporal and spatial analyses of radar refractivity exhibit high correlation with Mesonet data; however, periods of large refractivity differences between the radar and Mesonet are observed. Several sources of refractivity differences are examined to determine the cause of large refractivity differences. One source for nonklystron radars includes magnetron frequency drift, which can introduce errors up to 10 N-units if the frequency drift is not corrected. Different reference maps made at different times can “shift” refractivity values. A semiautomated method for producing reference maps is presented, including trade-offs for making reference maps under different conditions. Refractivity from six Mesonet stations within the clutter domain of the Oklahoma City, Oklahoma, WSR-88D (KTLX) is compared with radar refractivity retrievals. The analysis revealed that the six Mesonet stations exhibited a prominent diurnal trend in differences between radar and Mesonet refractivity measurements. The diurnal range of the refractivity differences sometimes exceeded 20 or 30 N-units in the warm season, which translated to a potential dewpoint temperature difference of several degrees Celsius. A seasonal analysis revealed that large refractivity differences primarily occurred during the warm season when refractivity is most sensitive to moisture. Ultimately, the main factor in determining the magnitude of the differences between the two refractivity platforms is the vertical gradient of refractivity because of the difference in observation height between the radar and a surface station.

Full access
Aaron Johnson
,
Xuguang Wang
,
Ming Xue
,
Fanyou Kong
,
Gang Zhao
,
Yunheng Wang
,
Kevin W. Thomas
,
Keith A. Brewster
, and
Jidong Gao

Abstract

Multiscale convection-allowing precipitation forecast perturbations are examined for two forecasts and systematically over 34 forecasts out to 30-h lead time using Haar Wavelet decomposition. Two small-scale initial condition (IC) perturbation methods are compared to the larger-scale IC and physics perturbations in an experimental convection-allowing ensemble. For a precipitation forecast driven primarily by a synoptic-scale baroclinic disturbance, small-scale IC perturbations resulted in little precipitation forecast perturbation energy on medium and large scales, compared to larger-scale IC and physics (LGPH) perturbations after the first few forecast hours. However, for a case where forecast convection at the initial time grew upscale into a mesoscale convective system (MCS), small-scale IC and LGPH perturbations resulted in similar forecast perturbation energy on all scales after about 12 h. Small-scale IC perturbations added to LGPH increased total forecast perturbation energy for this case. Averaged over 34 forecasts, the small-scale IC perturbations had little impact on large forecast scales while LGPH accounted for about half of the error energy on such scales. The impact of small-scale IC perturbations was also less than, but comparable to, the impact of LGPH perturbations on medium scales. On small scales, the impact of small-scale IC perturbations was at least as large as the LGPH perturbations. The spatial structure of small-scale IC perturbations affected the evolution of forecast perturbations, especially at medium scales. There was little systematic impact of the small-scale IC perturbations when added to LGPH. These results motivate further studies on properly sampling multiscale IC errors.

Full access
Alexandre O. Fierro
,
Jidong Gao
,
Conrad L. Ziegler
,
Edward R. Mansell
,
Donald R. MacGorman
, and
Scott R. Dembek

Abstract

This work evaluates the short-term forecast (≤6 h) of the 29–30 June 2012 derecho event from the Advanced Research core of the Weather Research and Forecasting Model (WRF-ARW) when using two distinct data assimilation techniques at cloud-resolving scales (3-km horizontal grid). The first technique assimilates total lightning data using a smooth nudging function. The second method is a three-dimensional variational technique (3DVAR) that assimilates radar reflectivity and radial velocity data. A suite of sensitivity experiments revealed that the lightning assimilation was better able to capture the placement and intensity of the derecho up to 6 h of the forecast. All the simulations employing 3DVAR, however, best represented the storm’s radar reflectivity structure at the analysis time. Detailed analysis revealed that a small feature in the velocity field from one of the six selected radars in the original 3DVAR experiment led to the development of spurious convection ahead of the parent mesoscale convective system, which significantly degraded the forecast. Thus, the relatively simple nudging scheme using lightning data complements the more complex variational technique. The much lower computational cost of the lightning scheme may permit its use alongside variational techniques in improving severe weather forecasts on days favorable for the development of outflow-dominated mesoscale convective systems.

Full access
Alexandre O. Fierro
,
Jidong Gao
,
Conrad L. Ziegler
,
Kristin M. Calhoun
,
Edward R. Mansell
, and
Donald R. Macgorman
Full access