Search Results

You are looking at 31 - 40 of 54 items for

  • Author or Editor: Kevin Hamilton x
  • Refine by Access: All Content x
Clear All Modify Search
Yoshio Kawatani, Jae N. Lee, and Kevin Hamilton

Abstract

By analyzing the almost-decade-long record of water vapor measurements from the Microwave Limb Sounder (MLS) instrument on the NASA Aura satellite and by detailed diagnostic analysis of the results from state-of-the art climate model simulations, this study confirmed the conceptual picture of the interannual variation in equatorial stratospheric water vapor discussed in earlier papers (e.g., Geller et al.). The interannual anomalies in water vapor are strongly related to the dynamical quasi-biennial oscillation (QBO), and this study presents the first QBO composite of the time–height structure of the equatorial water vapor anomalies. The anomalies display upward propagation below about 10 hPa in a manner analogous to the annual “tape recorder” effect, but at higher levels they show clear downward propagation. This study examined these variations in the Model for Interdisciplinary Research on Climate (MIROC)-AGCM and in four models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that simulate realistic QBOs. Diagnostic budget analysis of the MIROC-AGCM data and comparisons among the CMIP5 model results demonstrate (i) the importance of temperature anomalies at the tropopause induced by the QBO for lower-stratospheric water vapor variations and (ii) that upper-stratospheric water vapor anomalies are largely driven by advection of the mean vertical gradient of water content by the QBO interannual fluctuations in the vertical wind.

Full access
Chunxi Zhang, Yuqing Wang, and Kevin Hamilton

Abstract

A modified Tiedtke cumulus parameterization (CP) scheme has been implemented into the Advanced Research Weather Research and Forecasting model (ARW-WRF) to improve the representation of marine boundary layer (MBL) clouds over the southeast Pacific (SEP). A full month simulation for October 2006 was performed by using the National Centers for Environmental Prediction (NCEP) final analysis (FNL) as both the initial and lateral boundary conditions and the observed sea surface temperature (SST). The model simulation was compared with satellite observations and with results from an intense ship-based campaign of balloon soundings during 16–20 October 2006 at 20°S, 85°W.

The model with the modified Tiedtke scheme successfully captured the main features of the MBL structure and low clouds over the SEP, including the geographical distribution of MBL clouds, the cloud regime transition, and the vertical structure of the MBL. The model simulation was repeated with the various CP schemes currently provided as standard options in ARW-WRF. The simulations with other CP schemes failed to reproduce the geographical distribution of cloud fraction and the observed cloud regime transition, and displayed an MBL too shallow compared to observations. The improved simulation with the modified Tiedtke scheme can be attributed to a more active parameterized shallow convection with the modified Tiedtke scheme than with the other CP schemes tested, which played a critical role in lifting the inversion base and the low cloud layer. Results from additional sensitivity experiments employing different planetary boundary layer (PBL) parameterization schemes demonstrated that the basic feature of the MBL structure and low clouds over the SEP were not particularly sensitive to the choice of the PBL scheme.

Full access
Markus Stowasser, Yuqing Wang, and Kevin Hamilton

Abstract

The influence of global warming on the climatology of tropical cyclones in the western North Pacific basin is examined using the high-resolution International Pacific Research Center (IPRC) regional climate model forced by ocean temperatures and horizontal boundary fields taken from the NCAR Community Climate System Model version 2 (CCSM2) coupled global climate model. The regional model is first tested in 10 yr of simulation with boundary forcing taken from observations and is shown to produce a reasonably good representation of the observed statistics of tropical cyclone numbers and locations. The model was then run for 10 yr with forcing from a present-day control run of the CCSM2 and then for 10 yr with forcing fields taken from the end of a long run with 6 times the present-day atmospheric CO2 concentration. The global-mean surface air temperature warming in the perturbed run is 4.5 K, while the surface warming in the tropical western North Pacific is about 3 K. The results of these experiments reveal no statistically significant change in basinwide tropical cyclone numbers in the peak season from July to October in response to the CO2 increase. However, a pronounced and statistically significant increase in tropical cyclone occurrence in the South China Sea is found. While the basinwide total number of storms remains nearly unchanged in the warm climate, there is a statistically significant increase in the average strength of the cyclones and in the number of the storms in the strongest wind categories.

Full access
Marvin A. Geller, Tiehan Zhou, and Kevin Hamilton

Abstract

Sensitivity tests of a mechanistic model of the mean meridional circulation driven by specified eddy forcing are conducted to investigate how the morphology of tropical upwelling in the lower stratosphere is related to the structure of the forcing expected to be associated with the stratospheric surf zone. The basic morphology of tropical upwelling is found to be similar among the mechanistic model forced with reasonable eddy fluxes, the Geophysical Fluid Dynamics Laboratory (GFDL) SKYHI GCM, U.K. Met Office (UKMO) analyses, and other climate models, indicating the robustness of the upwelling features. Atmospheric data are analyzed to characterize the interannual variability of wave drag. The influence of such variations on the interannual variability of tropical upwelling in the lower stratosphere is explored, which may help explain the observed interannual variability of stratospheric water vapor.

Full access
Tiehan Zhou, Marvin A. Geller, and Kevin Hamilton

Abstract

Several idealized models of tropical upwelling are presented in order to clarify the roles of the nonlinear Hadley circulation and extratropical wave driving. In particular, it is shown that the Hadley circulation and wave-driven circulation interact to determine the nature of tropical upwelling. The authors explain several observed features such as maximum upwelling in the summer subtropics and the annual variation of the upwelling.

Full access
Yoshio Kawatani, Kevin Hamilton, and Shingo Watanabe

Abstract

The effects of anticipated twenty-first-century global climate change on the stratospheric quasi-biennial oscillation (QBO) have been studied using a high-resolution version of the Model for Interdisciplinary Research on Climate (MIROC) atmospheric GCM. This version of the model is notable for being able to simulate a fairly realistic QBO for present-day conditions including only explicitly resolved nonstationary waves. A long control integration of the model was run with observed climatological sea surface temperatures (SSTs) appropriate for the late twentieth century, followed by another integration with increased atmospheric CO2 concentration and SSTs incremented by the projected twenty-first-century warming in a multimodel ensemble of coupled ocean–atmosphere runs that were forced by the Special Report on Emissions Scenarios (SRES) A1B scenario of future atmospheric composition. In the experiment for late twenty-first-century conditions the QBO period becomes longer and QBO amplitude weaker than in the late twentieth-century simulation. The downward penetration of the QBO into the lowermost stratosphere is also curtailed in the late twenty-first-century run. These changes are driven by a significant (30%–40%) increase of the mean upwelling in the equatorial stratosphere, and the effect of this enhanced mean circulation overwhelms counteracting influences from strengthened wave fluxes in the warmer climate. The momentum fluxes associated with waves propagating upward into the equatorial stratosphere do strengthen overall by ∼(10%–15%) in the warm simulation, but the increases are almost entirely in zonal phase speed ranges that have little effect on the stratospheric QBO but that would be expected to have important influences in the mesosphere and lower thermosphere.

Full access
Yuqing Wang, Li Zhou, and Kevin Hamilton

Abstract

A regional atmospheric model (RegCM) developed at the International Pacific Research Center (IPRC) is used to investigate the effect of assumed fractional convective entrainment/detrainment rates in the Tiedtke mass flux convective parameterization scheme on the simulated diurnal cycle of precipitation over the Maritime Continent region. Results are compared with observations based on 7 yr of the Tropical Rainfall Measuring Mission (TRMM) satellite measurements. In a control experiment with the default fractional convective entrainment/detrainment rates, the model produces results typical of most other current regional and global atmospheric models, namely a diurnal cycle with precipitation rates over land that peak too early in the day and with an unrealistically large diurnal range. Two sensitivity experiments were conducted in which the fractional entrainment/detrainment rates were increased in the deep and shallow convection parameterizations, respectively. Both of these modifications slightly delay the time of the rainfall-rate peak during the day and reduce the diurnal amplitude of precipitation, thus improving the simulation of precipitation diurnal cycle to some degree, but better results are obtained when the assumed entrainment/detrainment rates for shallow convection are increased to the value consistent with the published results from a large eddy simulation (LES) study. It is shown that increasing the entrainment/detrainment rates would prolong the development and reduce the strength of deep convection, thus delaying the mature phase and reducing the amplitude of the convective precipitation diurnal cycle over the land. In addition to the improvement in the simulation of the precipitation diurnal cycle, convective entrainment/detrainment rates also affect the simulation of temporal variability of daily mean precipitation and the partitioning of stratiform and convective rainfall in the model. The simulation of the observed offshore migration of the diurnal signal is realistic in some regions but is poor in some other regions. This discrepancy seems not to be related to the convective lateral entrainment/detrainment rate but could be due to the insufficient model resolution used in this study that is too coarse to resolve the complex land–sea contrast.

Full access
Kevin Hamilton, R. John Wilson, and Richard S. Hemler

Abstract

The tropical stratospheric mean flow behavior in a series of integrations with high vertical resolution versions of the Geophysical Fluid Dynamics Laboratory (GFDL) “SKYHI” model is examined. At sufficiently high vertical and horizontal model resolution, the simulated stratospheric zonal winds exhibit a strong equatorially centered oscillation with downward propagation of the wind reversals and with formation of strong vertical shear layers. This appears to be a spontaneous internally generated oscillation and closely resembles the observed quasi-biennial oscillation (QBO) in many respects, although the simulated oscillation has a period less than half that of the real QBO. The same basic mean flow oscillation appears in both seasonally varying and perpetual equinox versions of the model, and most of the analysis in this paper is focused on the perpetual equinox cases. The mean flow oscillation is shown to be largely driven by eddy momentum fluxes associated with a broad spectrum of vertically propagating waves generated spontaneously in the tropical troposphere of the model. Several experiments are performed with the model parameters perturbed in various ways. The period of the simulated tropical stratospheric mean flow oscillation is found to change in response to large alterations in the sea surface temperatures (SSTs) employed. This is a fairly direct demonstration of the link between the stratospheric mean flow behavior and tropical convection that is inherent in current theories of the QBO. It is also shown in another series of experiments that the oscillation is affected by the coefficients used for the subgrid-scale diffusion parameterization. These experiments demonstrate that at least one key reason why reasonably fine horizontal resolution is needed for the model to simulate a mean flow oscillation is the smaller horizontal diffusion that can be used at high resolution.

Full access
Philip W. Jones, Kevin Hamilton, and R. John Wilson

Abstract

This paper discusses a simulation obtained with the Geophysical Fluid Dynamics Laboratory “SKYHI” troposphere–stratosphere–mesosphere general circulation model run at very high horizontal resolution (∼60-km grid spacing) and without any parameterization of subgrid-scale gravity wave drag. The results are for a period around the austral winter solstice, and the emphasis is on the simulated Southern Hemisphere (SH) winter circulation. Comparisons are made with results obtained from lower horizontal resolution versions of the same model.

The focus in this paper is on two particularly striking features of the high-resolution simulation: the extratropical surface winds and the winter polar middle atmospheric vortex. In the extratropical SH, the simulated surface westerlies and meridional surface pressure gradients in the high-resolution model are considerably stronger than observed and are stronger than those simulated at lower horizontal resolution. In the middle atmosphere, the high-resolution model produces a simulation of the zonal mean winter polar vortex that is considerably improved over that found with lower resolution models (although it is still significantly affected by the usual cold pole bias). Neither the improvement of the middle atmospheric polar vortex simulation nor the deterioration of the simulation of surface winds with increased model resolution shows a clear convergence, even at the ∼60-km grid spacing employed here.

Full access
Chunxi Zhang, Yuqing Wang, Kevin Hamilton, and Axel Lauer

Abstract

Hawaii’s high and steep topography leads to pronounced small-scale variations in climate, and this makes comprehensive modeling of the weather and climate particularly challenging. This paper describes a regional model formulation designed for simulations of the microclimates in Hawaii and then documents and analyzes an extended retrospective simulation for near-present-day conditions. Part II will apply the model to projected climate conditions near the end of the present century.

A nested version of the Advanced Research version of the Weather Research and Forecasting Model with fine horizontal resolution and improved physics for the Hawaiian region has been configured. A 20-yr triply nested simulation of the atmospheric flow was undertaken with a 3-km-resolution mesh covering all main Hawaiian Islands and a 1-km mesh over Maui. Ocean surface temperatures are prescribed from observations, and meteorological fields at the boundaries of the outermost domain are taken from global reanalyses. The simulations are compared to surface, balloon, and satellite observations over the same period. The 3-km version of the model realistically simulates the frequency of trade wind inversions, time-mean rainfall, and other variables on relatively small scales over the island of Hawaii. There is a reasonable agreement between observed and simulated mean rainfall patterns over the other islands as well. However, the simulated distribution of mean rainfall over Kauai and (most particularly) Maui and Oahu reveals some significant deficiencies, which is attributed to inadequate resolution of the topography on these islands. The 1-km simulation over Maui shows clear improvement in the mean rainfall over the 3-km version.

Full access