Search Results

You are looking at 31 - 37 of 37 items for

  • Author or Editor: Kevin I. Hodges x
  • Refine by Access: All Content x
Clear All Modify Search
Elliott M. Sainsbury
,
Reinhard K. H. Schiemann
,
Kevin I. Hodges
,
Alexander J. Baker
,
Len C. Shaffrey
, and
Kieran T. Bhatia

Abstract

Post-tropical cyclones (PTCs) can bring high winds and extreme precipitation to Europe. Although the structure and intensity of observed Europe-impacting PTCs has been investigated in previous studies, a quantitative understanding of the factors important for PTCs to reach Europe has not been established. By tracking and identifying the full life cycle of tropical cyclones (TCs) in the ERA5 reanalysis, we investigate why some PTCs impact Europe and why others do not, using a composite analysis. We show that PTCs that impact Europe are typically ∼4–6 m s−1 stronger at their lifetime maximum intensity and throughout the extratropical transition process. They are also twice as likely to reintensify in the midlatitudes. During ET, the Europe-impacting PTCs interact more strongly with an upstream upper-level trough in a significantly more baroclinic environment. The Europe-impacting PTCs are steered on a more poleward trajectory across a midlatitude jet streak. It is during the crossing of the jet that these cyclones often undergo their reintensification. Using contingency table analysis, TC lifetime maximum intensity, and whether post-ET reintensification occurs are shown to be significantly associated with the odds that a PTC reaches Europe. This supports our composite analysis and further indicates that TC intensity and reintensification both modulate the likelihood that a PTC will impact Europe.

Significance Statement

Some post-tropical cyclones (PTCs) reach Europe, often associated with extreme precipitation and high winds. It is currently unclear what factors allow this to occur. In this study, we track cyclones in two reanalyses using a feature tracking scheme and identify the PTCs by matching (in space and time) reanalysis tracks with observed tracks. Using a composite analysis, we show that 1) tropical cyclones (TCs) that are more intense, and 2) TCs that reintensify after extratropical transition, are more likely to reach Europe. TCs that reintensify interact strongly with an upper-level upstream trough and cross a midlatitude jet streak. Reintensification occurs as the cyclones cross this jet streak.

Open access
Matthew J. Widlansky
,
H. Annamalai
,
Stephen B. Gingerich
,
Curt D. Storlazzi
,
John J. Marra
,
Kevin I. Hodges
,
Barry Choy
, and
Akio Kitoh

Abstract

Potential changing climate threats in the tropical and subtropical North Pacific Ocean were assessed, using coupled ocean–atmosphere and atmosphere-only general circulation models, to explore their response to projected increasing greenhouse gas emissions. Tropical cyclone occurrence, described by frequency and intensity, near islands housing major U.S. defense installations was the primary focus. Four island regions—Guam and Kwajalein Atoll in the tropical northwestern Pacific, Okinawa in the subtropical northwestern Pacific, and Oahu in the tropical north-central Pacific—were considered, as they provide unique climate and geographical characteristics that either enhance or reduce the tropical cyclone risk. Guam experiences the most frequent and severe tropical cyclones, which often originate as weak systems close to the equator near Kwajalein and sometimes track far enough north to affect Okinawa, whereas intense storms are the least frequent around Oahu. From assessments of models that simulate well the tropical Pacific climate, it was determined that, with a projected warming climate, the number of tropical cyclones is likely to decrease for Guam and Kwajalein but remain about the same near Okinawa and Oahu; however, the maximum intensity of the strongest storms may increase in most regions. The likelihood of fewer but stronger storms will necessitate new localized assessments of the risk and vulnerabilities to tropical cyclones in the North Pacific.

Full access
Alexander J. Baker
,
Malcolm J. Roberts
,
Pier Luigi Vidale
,
Kevin I. Hodges
,
Jon Seddon
,
Benoît Vannière
,
Rein J. Haarsma
,
Reinhard Schiemann
,
Dimitris Kapetanakis
,
Etienne Tourigny
,
Katja Lohmann
,
Christopher D. Roberts
, and
Laurent Terray

Abstract

Tropical cyclones undergo extratropical transition (ET) in every ocean basin. Projected changes in ET frequency under climate change are uncertain and differ between basins, so multimodel studies are required to establish confidence. We used a feature-tracking algorithm to identify tropical cyclones and performed cyclone phase-space analysis to identify ET in an ensemble of atmosphere-only and fully coupled global model simulations, run at various resolutions under historical (1950–2014) and future (2015–50) forcing. Historical simulations were evaluated against five reanalyses for 1979–2018. Considering ET globally, ensemble-mean biases in track and genesis densities are reduced in the North Atlantic and western North Pacific when horizontal resolution is increased from ∼100 to ∼25 km. At high resolution, multi-reanalysis-mean climatological ET frequencies across most ocean basins as well as basins’ seasonal cycles are reproduced better than in low-resolution models. Skill in simulating historical ET interannual variability in the North Atlantic and western North Pacific is ∼0.3, which is lower than for all tropical cyclones. Models project an increase in ET frequency in the North Atlantic and a decrease in the western North Pacific. We explain these opposing responses by secular change in ET seasonality and an increase in lower-tropospheric, pre-ET warm-core strength, both of which are largely unique to the North Atlantic. Multimodel consensus about climate change responses is clearer for frequency metrics than for intensity metrics. These results help clarify the role of model resolution in simulating ET and help quantify uncertainty surrounding ET in a warming climate.

Open access
Alexander J. Baker
,
Reinhard Schiemann
,
Kevin I. Hodges
,
Marie-Estelle Demory
,
Matthew S. Mizielinski
,
Malcolm J. Roberts
,
Len C. Shaffrey
,
Jane Strachan
, and
Pier Luigi Vidale

Abstract

Wintertime midlatitude cyclone activity and precipitation are projected to increase across northern Europe and decrease over southern Europe, particularly over the western Mediterranean. Greater confidence in these regional projections may be established by their replication in state-of-the-art, high-resolution global climate models that resolve synoptic-scale dynamics. We evaluated the representation of the wintertime eddy-driven and subtropical jet streams, extratropical cyclone activity, and precipitation across the North Atlantic and Europe under historical (1985–2011) and RCP8.5 sea surface temperature forcing in an ensemble of atmosphere-only HadGEM3-GA3.0 simulations, where horizontal atmospheric resolution is increased from 135 to 25 km. Under RCP8.5, increased (decreased) frequency of northern (southern) eddy-driven jet occurrences and a basinwide poleward shift in the upper-level westerly flow are simulated. Increasing atmospheric resolution significantly enhances these climate change responses. At 25-km resolution, these enhanced changes in large-scale circulation amplify increases (decreases) in extratropical cyclone track density and mean intensity across the northern (southern) Euro-Atlantic region under RCP8.5. These synoptic changes with resolution impact the overall climate change response of mean and heavy winter precipitation: wetter (drier) conditions in northern (southern) Europe are also amplified at 25-km resolution. For example, the reduction in heavy precipitation simulated over the Iberian Peninsula under RCP8.5 is ~15% at 135 km but ~30% at 25-km resolution. Conversely, a shift to more frequent high extratropical cyclone (ETC)-associated precipitation rates is simulated over Scandinavia under RCP8.5, which is enhanced at 25 km. This study provides evidence that global atmospheric resolution may be a crucial consideration in European winter climate change projections.

Full access
Julia V. Manganello
,
Kevin I. Hodges
,
James L. Kinter III
,
Benjamin A. Cash
,
Lawrence Marx
,
Thomas Jung
,
Deepthi Achuthavarier
,
Jennifer M. Adams
,
Eric L. Altshuler
,
Bohua Huang
,
Emilia K. Jin
,
Cristiana Stan
,
Peter Towers
, and
Nils Wedi

Abstract

Northern Hemisphere tropical cyclone (TC) activity is investigated in multiyear global climate simulations with the ECMWF Integrated Forecast System (IFS) at 10-km resolution forced by the observed records of sea surface temperature and sea ice. The results are compared to analogous simulations with the 16-, 39-, and 125-km versions of the model as well as observations.

In the North Atlantic, mean TC frequency in the 10-km model is comparable to the observed frequency, whereas it is too low in the other versions. While spatial distributions of the genesis and track densities improve systematically with increasing resolution, the 10-km model displays qualitatively more realistic simulation of the track density in the western subtropical North Atlantic. In the North Pacific, the TC count tends to be too high in the west and too low in the east for all resolutions. These model errors appear to be associated with the errors in the large-scale environmental conditions that are fairly similar in this region for all model versions.

The largest benefits of the 10-km simulation are the dramatically more accurate representation of the TC intensity distribution and the structure of the most intense storms. The model can generate a supertyphoon with a maximum surface wind speed of 68.4 m s−1. The life cycle of an intense TC comprises intensity fluctuations that occur in apparent connection with the variations of the eyewall/rainband structure. These findings suggest that a hydrostatic model with cumulus parameterization and of high enough resolution could be efficiently used to simulate the TC intensity response (and the associated structural changes) to future climate change.

Full access
Julia V. Manganello
,
Kevin I. Hodges
,
Brandt Dirmeyer
,
James L. Kinter III
,
Benjamin A. Cash
,
Lawrence Marx
,
Thomas Jung
,
Deepthi Achuthavarier
,
Jennifer M. Adams
,
Eric L. Altshuler
,
Bohua Huang
,
Emilia K. Jin
,
Peter Towers
, and
Nils Wedi

Abstract

How tropical cyclone (TC) activity in the northwestern Pacific might change in a future climate is assessed using multidecadal Atmospheric Model Intercomparison Project (AMIP)-style and time-slice simulations with the ECMWF Integrated Forecast System (IFS) at 16-km and 125-km global resolution. Both models reproduce many aspects of the present-day TC climatology and variability well, although the 16-km IFS is far more skillful in simulating the full intensity distribution and genesis locations, including their changes in response to El Niño–Southern Oscillation. Both IFS models project a small change in TC frequency at the end of the twenty-first century related to distinct shifts in genesis locations. In the 16-km IFS, this shift is southward and is likely driven by the southeastward penetration of the monsoon trough/subtropical high circulation system and the southward shift in activity of the synoptic-scale tropical disturbances in response to the strengthening of deep convective activity over the central equatorial Pacific in a future climate. The 16-km IFS also projects about a 50% increase in the power dissipation index, mainly due to significant increases in the frequency of the more intense storms, which is comparable to the natural variability in the model. Based on composite analysis of large samples of supertyphoons, both the development rate and the peak intensities of these storms increase in a future climate, which is consistent with their tendency to develop more to the south, within an environment that is thermodynamically more favorable for faster development and higher intensities. Coherent changes in the vertical structure of supertyphoon composites show system-scale amplification of the primary and secondary circulations with signs of contraction, a deeper warm core, and an upward shift in the outflow layer and the frequency of the most intense updrafts. Considering the large differences in the projections of TC intensity change between the 16-km and 125-km IFS, this study further emphasizes the need for high-resolution modeling in assessing potential changes in TC activity.

Full access
Lennart Bengtsson
,
Phil Arkin
,
Paul Berrisford
,
Philippe Bougeault
,
Chris K. Folland
,
Chris Gordon
,
Keith Haines
,
Kevin I. Hodges
,
Phil Jones
,
Per Kallberg
,
Nick Rayner
,
Adrian J. Simmons
,
Detlef Stammer
,
Peter W. Thorne
,
Sakari Uppala
, and
Russell S. Vose
Full access