Search Results
You are looking at 31 - 40 of 76 items for
- Author or Editor: Margaret LeMone x
- Refine by Access: All Content x
Abstract
A collection of case studies is used to elucidate the influence of environmental soundings on the structure and evolution of the convection in the mesoscale convective systems sampled by the turboprop aircraft in the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment (COARE). The soundings were constructed primarily from aircraft data below 5–6 km and primarily from radiosonde data at higher altitudes.
The well-documented role of the vertical shear of the horizontal wind in determining the mesoscale structure of tropical convection is confirmed and extended. As noted by earlier investigators, nearly all convective bands occurring in environments with appreciable shear below a low-level wind maximum are oriented nearly normal to the shear beneath the wind maximum and propagate in the direction of the low-level shear at a speed close to the wind maximum; when there is appreciable shear at middle levels (800–400 mb), convective bands form parallel to the shear. With appreciable shear at both levels, the lower-level shear determines the orientation of the primary convective bands. If the midlevel shear is opposite the low-level shear, secondary bands parallel to the midlevel shear will extend rearward from the primary band in later stages of its evolution; if the midlevel shear is 90 degrees to the low-level shear, the primary band will retain its two-dimensional mesoscale structure. Convection has no obvious mesoscale organization on days with little shear or days with widespread convection.
Environmental temperatures and humidities have no obvious effect on the mesoscale convective pattern, but they affect COARE convection in other ways. The high tops of COARE convection are related to high parcel equilibrium levels, which approach 100 mb in some cases. Convective available potential energies are larger than those in the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) mainly because of the higher equilibrium levels. The buoyancy integrated over the lowest 500 mb is similar for the two experiments. Convective inihibitions are small, enabling convection to propagate with only weak forcing. Comparison of slow-moving shear-parallel bands in COARE and GATE suggests that lower relative humidities between the top of the mixed layer and 500 mb can shorten their lifetimes significantly.
COARE mesoscale organization and evolution differs from what was observed in GATE. Less-organized convection is more common in COARE. Of the convective bands observed, a greater fraction in COARE are faster-moving, shear-perpendicular squall lines. GATE slow-moving lines tend to be longer lived than those for COARE. The differences are probably traceable to differences in environmental shear and relative humidity, respectively.
Abstract
A collection of case studies is used to elucidate the influence of environmental soundings on the structure and evolution of the convection in the mesoscale convective systems sampled by the turboprop aircraft in the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment (COARE). The soundings were constructed primarily from aircraft data below 5–6 km and primarily from radiosonde data at higher altitudes.
The well-documented role of the vertical shear of the horizontal wind in determining the mesoscale structure of tropical convection is confirmed and extended. As noted by earlier investigators, nearly all convective bands occurring in environments with appreciable shear below a low-level wind maximum are oriented nearly normal to the shear beneath the wind maximum and propagate in the direction of the low-level shear at a speed close to the wind maximum; when there is appreciable shear at middle levels (800–400 mb), convective bands form parallel to the shear. With appreciable shear at both levels, the lower-level shear determines the orientation of the primary convective bands. If the midlevel shear is opposite the low-level shear, secondary bands parallel to the midlevel shear will extend rearward from the primary band in later stages of its evolution; if the midlevel shear is 90 degrees to the low-level shear, the primary band will retain its two-dimensional mesoscale structure. Convection has no obvious mesoscale organization on days with little shear or days with widespread convection.
Environmental temperatures and humidities have no obvious effect on the mesoscale convective pattern, but they affect COARE convection in other ways. The high tops of COARE convection are related to high parcel equilibrium levels, which approach 100 mb in some cases. Convective available potential energies are larger than those in the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) mainly because of the higher equilibrium levels. The buoyancy integrated over the lowest 500 mb is similar for the two experiments. Convective inihibitions are small, enabling convection to propagate with only weak forcing. Comparison of slow-moving shear-parallel bands in COARE and GATE suggests that lower relative humidities between the top of the mixed layer and 500 mb can shorten their lifetimes significantly.
COARE mesoscale organization and evolution differs from what was observed in GATE. Less-organized convection is more common in COARE. Of the convective bands observed, a greater fraction in COARE are faster-moving, shear-perpendicular squall lines. GATE slow-moving lines tend to be longer lived than those for COARE. The differences are probably traceable to differences in environmental shear and relative humidity, respectively.
Scientific investigation is supposed to be objective and strictly logical, but this is not always the case: the process that leads to a good conclusion can be messy. This narrative describes interactions among a group of scientists trying to solve a simple problem that had scientific implications. It started with the observation of a cloud exhibiting behavior associated with supercooled water and temperatures around −20°C. However, other aspects of the cloud suggested an altitude where the temperature was around −40°C. For several months following the appearance of the cloud on 23 March 2011, the people involved searched for evidence, formed strong opinions, argued, examined evidence more carefully, changed their minds, and searched for more evidence until they could reach agreement. While they concluded that the cloud was at the higher and colder altitude, evidence for supercooled liquid water at that altitude is not conclusive.
Scientific investigation is supposed to be objective and strictly logical, but this is not always the case: the process that leads to a good conclusion can be messy. This narrative describes interactions among a group of scientists trying to solve a simple problem that had scientific implications. It started with the observation of a cloud exhibiting behavior associated with supercooled water and temperatures around −20°C. However, other aspects of the cloud suggested an altitude where the temperature was around −40°C. For several months following the appearance of the cloud on 23 March 2011, the people involved searched for evidence, formed strong opinions, argued, examined evidence more carefully, changed their minds, and searched for more evidence until they could reach agreement. While they concluded that the cloud was at the higher and colder altitude, evidence for supercooled liquid water at that altitude is not conclusive.
Abstract
Past studies of the effects of mesoscale convective systems (MCSs) on the environmental flow have been limited by data coverage and resolution. In the current study the MCS-scale (stormwide) horizontal accelerations and momentum budget associated with an oceanic MCS are analyzed using output from a high-resolution three-dimensional numerical model integrated over a large domain. The simulation is based on an observed MCS that occurred on 22 February 1993 during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. An important aspect of both the observed and simulated MCS is its evolution from a quasi-two-dimensional to an asymmetric three-dimensional morphology, which was demonstrated in companion studies to result from the finite length of the MCS interacting with environmental vertical shear that varies in direction with height. Herein, the authors focus on the effects of the three-dimensional structure on MCS-scale horizontal accelerations.
The horizontal accelerations over the central portion of the MCS, where its leading edge is perpendicular to the low-level environmental vertical shear, resemble those from available observations and two-dimensional models of linear squall-type MCSs. However, the vertical structure of horizontal accelerations is quite different on the MCS scale. Zonal accelerations, which are aligned along the environmental low-level vertical shear, generally exceed meridional accelerations in the lower and upper troposphere, and are dominated by the vertical flux convergence term at low levels, and by the horizontal flux convergence term at upper levels. In contrast, zonal accelerations are weaker than meridional accelerations at midlevels, owing to strong cancellation of zonal accelerations in the central portion with those along the northern periphery of the MCS, where both the alignment of the convective band relative to the environmental vertical shear and its mesoscale organization are different. This compensation between different regions of the MCS results in modifications to the environmental vertical shear by mesoscale convection that differ substantially from those typically reported in idealized studies of two-dimensional squall lines. Since three-dimensional organization often occurs in MCSs that lack persistent external linear forcing, the current findings may have implications for the parameterization of the momentum effects of mesoscale deep convection in large-scale models.
Abstract
Past studies of the effects of mesoscale convective systems (MCSs) on the environmental flow have been limited by data coverage and resolution. In the current study the MCS-scale (stormwide) horizontal accelerations and momentum budget associated with an oceanic MCS are analyzed using output from a high-resolution three-dimensional numerical model integrated over a large domain. The simulation is based on an observed MCS that occurred on 22 February 1993 during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. An important aspect of both the observed and simulated MCS is its evolution from a quasi-two-dimensional to an asymmetric three-dimensional morphology, which was demonstrated in companion studies to result from the finite length of the MCS interacting with environmental vertical shear that varies in direction with height. Herein, the authors focus on the effects of the three-dimensional structure on MCS-scale horizontal accelerations.
The horizontal accelerations over the central portion of the MCS, where its leading edge is perpendicular to the low-level environmental vertical shear, resemble those from available observations and two-dimensional models of linear squall-type MCSs. However, the vertical structure of horizontal accelerations is quite different on the MCS scale. Zonal accelerations, which are aligned along the environmental low-level vertical shear, generally exceed meridional accelerations in the lower and upper troposphere, and are dominated by the vertical flux convergence term at low levels, and by the horizontal flux convergence term at upper levels. In contrast, zonal accelerations are weaker than meridional accelerations at midlevels, owing to strong cancellation of zonal accelerations in the central portion with those along the northern periphery of the MCS, where both the alignment of the convective band relative to the environmental vertical shear and its mesoscale organization are different. This compensation between different regions of the MCS results in modifications to the environmental vertical shear by mesoscale convection that differ substantially from those typically reported in idealized studies of two-dimensional squall lines. Since three-dimensional organization often occurs in MCSs that lack persistent external linear forcing, the current findings may have implications for the parameterization of the momentum effects of mesoscale deep convection in large-scale models.
Abstract
The precipitation, thermodynamic, and kinematic structure of an oceanic mesoscale convective system is studied using airborne Doppler and in situ (flight-level) data collected by the NOAA P-3 aircraft. The system, a well-organized, stationary, north-south convective line, was located near the east coast of Taiwan. In Part I, the basic structure of the line is documented with both datasets, a procedure revealing the strengths and weakness of both approaches.
The Doppler data reveal that the warm, moist air feeding the line enters from the east side. Most updrafts associated with the leading edge of the convective line tilt westward below 5 km and then eastward above 5 km. This change of tilt corresponds to a change in the sign of the vertical flux of east-west momentum. To the east of the leading edge, a 10-km-wide zone of strong mesoscale descent is seen. The band is not a complete barrier to the low-level southeasterly flow, and at times and places along the line the inflowing air can move through the band with little or no upward acceleration. The minimum pressures at low levels lie east of the highest reflectivity and also underneath the tilted updraft at upper levels, in agreement with the tilt of the updraft, the buoyancy distribution, and the interaction of the updraft with the vertical shear of the horizontal wind. The Doppler data show very few convective-scale downdrafts and no low-level gust front that would organize the convection as in propagating squall lines, although lack of resolution in the pseudo-dual-Doppler data at the lowest levels may mask features with horizontal scales <5 km. Vertical incidence Doppler observations show only a few relatively weak convective-scale downdrafts within the heavy rainfall region of the convective line.
The in situ data confirm that warm, moist air feeds the convective line from the east side, but they show a larger fraction of air coming into the convection from the boundary layer than do the Doppler data. They confirm that the line is not an effective barrier to the flow: some air from the east of the line, including boundary-layer air, passes through the line without joining the updrafts. Again, some weak convective-scale downdrafts are evident, but a gust front was not detected. However, at low levels, a pool of low-θ e , air lies 10–20 km to the west of the line, outside the dual-Doppler domain. This cool air apparently originated to the north (beneath an extensive stratiform area, but preexisting baroclinicity associated with a front may have also contributed to the cool air) and advected southward. Vertically incident Doppler data confirm the upper-level downdraft zone to the east of the updraft. Above 2 km, the pressure and vertical velocity fields are consistent, with low pressure lying beneath the tilting updrafts in both datasets. Below 2 km, the in situ data reveal a mesolow beneath the westward-tilting updraft that was not captured by the Doppler data, apparently because of contamination of the very lowest levels by ground clutter.
Abstract
The precipitation, thermodynamic, and kinematic structure of an oceanic mesoscale convective system is studied using airborne Doppler and in situ (flight-level) data collected by the NOAA P-3 aircraft. The system, a well-organized, stationary, north-south convective line, was located near the east coast of Taiwan. In Part I, the basic structure of the line is documented with both datasets, a procedure revealing the strengths and weakness of both approaches.
The Doppler data reveal that the warm, moist air feeding the line enters from the east side. Most updrafts associated with the leading edge of the convective line tilt westward below 5 km and then eastward above 5 km. This change of tilt corresponds to a change in the sign of the vertical flux of east-west momentum. To the east of the leading edge, a 10-km-wide zone of strong mesoscale descent is seen. The band is not a complete barrier to the low-level southeasterly flow, and at times and places along the line the inflowing air can move through the band with little or no upward acceleration. The minimum pressures at low levels lie east of the highest reflectivity and also underneath the tilted updraft at upper levels, in agreement with the tilt of the updraft, the buoyancy distribution, and the interaction of the updraft with the vertical shear of the horizontal wind. The Doppler data show very few convective-scale downdrafts and no low-level gust front that would organize the convection as in propagating squall lines, although lack of resolution in the pseudo-dual-Doppler data at the lowest levels may mask features with horizontal scales <5 km. Vertical incidence Doppler observations show only a few relatively weak convective-scale downdrafts within the heavy rainfall region of the convective line.
The in situ data confirm that warm, moist air feeds the convective line from the east side, but they show a larger fraction of air coming into the convection from the boundary layer than do the Doppler data. They confirm that the line is not an effective barrier to the flow: some air from the east of the line, including boundary-layer air, passes through the line without joining the updrafts. Again, some weak convective-scale downdrafts are evident, but a gust front was not detected. However, at low levels, a pool of low-θ e , air lies 10–20 km to the west of the line, outside the dual-Doppler domain. This cool air apparently originated to the north (beneath an extensive stratiform area, but preexisting baroclinicity associated with a front may have also contributed to the cool air) and advected southward. Vertically incident Doppler data confirm the upper-level downdraft zone to the east of the updraft. Above 2 km, the pressure and vertical velocity fields are consistent, with low pressure lying beneath the tilting updrafts in both datasets. Below 2 km, the in situ data reveal a mesolow beneath the westward-tilting updraft that was not captured by the Doppler data, apparently because of contamination of the very lowest levels by ground clutter.
Abstract
This study documents the precipitation and kinematic structure of a mature, eastward propagating, oceanic squall line system observed by instrumented aircraft during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). Doppler radar and low-level in situ observations are used to show the evolution of the convection from an initially linear NNW–SSE-oriented convective line to a highly bow-shaped structure with an embedded low- to midlevel counterclockwise rotating vortex on its northern flank. In addition to previously documented features of squall lines such as highly upshear-tilted convection on its leading edge, a channel of strong front-to-rear flow that ascended with height over a “rear-inflow” that descended toward the convective line, and a pronounced low-level cold pool apparently fed from convective and mesoscale downdrafts from the convective line; rearward, the observations of this system showed distinct multiple maxima in updraft strength with height and reflectivity bands extending rearward transverse to the principal convective line. Vertical motions within the active convective region of the squall line system were determined using a new approach that utilized near-simultaneous observations by the Doppler radars on two aircraft with up to four Doppler radial velocity estimates at echo top. Echo-top vertical motion can then be derived directly, which obviates the traditional dual-Doppler assumption of no vertical velocity at the top boundary and results in a more accurate estimate of tropospheric vertical velocity through downward integration of horizontal divergence.
Low-level flight-level observations of temperature, wind speed, and dew point collected rearward of the squall line are used to estimate bulk fluxes of dry and moist static energy. The strong near-surface fluxes, due to the warm sea and high winds, combined with estimates of mesoscale advection, are used to estimate boundary layer recovery time; they indicate that the boundary layer could recover from the effects of the cold dome within about 3 h of first cold air injection if the observed near-surface winds were maintained. However, the injection and spreading of air from above leads to cooling at a fixed spot ∼20 km rearward of the convective line (surface θ e minimum point), suggesting that the cold pool could be still intensifying at the time of observation. Recovery time at a point is probably similar to that measured in previous studies.
Abstract
This study documents the precipitation and kinematic structure of a mature, eastward propagating, oceanic squall line system observed by instrumented aircraft during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). Doppler radar and low-level in situ observations are used to show the evolution of the convection from an initially linear NNW–SSE-oriented convective line to a highly bow-shaped structure with an embedded low- to midlevel counterclockwise rotating vortex on its northern flank. In addition to previously documented features of squall lines such as highly upshear-tilted convection on its leading edge, a channel of strong front-to-rear flow that ascended with height over a “rear-inflow” that descended toward the convective line, and a pronounced low-level cold pool apparently fed from convective and mesoscale downdrafts from the convective line; rearward, the observations of this system showed distinct multiple maxima in updraft strength with height and reflectivity bands extending rearward transverse to the principal convective line. Vertical motions within the active convective region of the squall line system were determined using a new approach that utilized near-simultaneous observations by the Doppler radars on two aircraft with up to four Doppler radial velocity estimates at echo top. Echo-top vertical motion can then be derived directly, which obviates the traditional dual-Doppler assumption of no vertical velocity at the top boundary and results in a more accurate estimate of tropospheric vertical velocity through downward integration of horizontal divergence.
Low-level flight-level observations of temperature, wind speed, and dew point collected rearward of the squall line are used to estimate bulk fluxes of dry and moist static energy. The strong near-surface fluxes, due to the warm sea and high winds, combined with estimates of mesoscale advection, are used to estimate boundary layer recovery time; they indicate that the boundary layer could recover from the effects of the cold dome within about 3 h of first cold air injection if the observed near-surface winds were maintained. However, the injection and spreading of air from above leads to cooling at a fixed spot ∼20 km rearward of the convective line (surface θ e minimum point), suggesting that the cold pool could be still intensifying at the time of observation. Recovery time at a point is probably similar to that measured in previous studies.
Abstract
An examination of the properties of updraft and downdraft cores using Electra data from TOGA COARE shows that they have diameters and vertical velocities similar to cores observed over other parts of the tropical and subtropical oceans. As in previous studies, a core is defined as having vertical velocity of the same sign and greater than an absolute value of 1 m s−1 for at least 500 m. A requirement that the core contain either cloud or precipitation throughout is added, but this should not affect the results significantly.
Since the Electra was equipped with the Ophir III radiometric temperature sensor, it was also possible to make estimates of core buoyancies. As in TAMEX and EMEX, where core temperatures were estimated using the modified side-looking Barnes radiometer on the NOAA P3s, a significant fraction of both updraft and downdraft cores had apparent virtual temperatures greater than their environments. In fact, the average virtual temperature deviation from the environment for downdraft cores was +0.4 K.
Sixteen of the strongest downdraft cores were examined, all of which had positive virtual-temperature deviations, to find the source of this surprising result. It is concluded that the downdraft cores are artificially warm because 100% relative humidity was assumed in calculating virtual temperature. However, reducing core mixing ratios to more physically realistic values does not eliminate warm virtual potential temperature downdraft cores, nor does water loading make all cores negatively buoyant. Thus positively buoyant convective downdrafts do exist, though probably in smaller numbers than previously suggested.
Abstract
An examination of the properties of updraft and downdraft cores using Electra data from TOGA COARE shows that they have diameters and vertical velocities similar to cores observed over other parts of the tropical and subtropical oceans. As in previous studies, a core is defined as having vertical velocity of the same sign and greater than an absolute value of 1 m s−1 for at least 500 m. A requirement that the core contain either cloud or precipitation throughout is added, but this should not affect the results significantly.
Since the Electra was equipped with the Ophir III radiometric temperature sensor, it was also possible to make estimates of core buoyancies. As in TAMEX and EMEX, where core temperatures were estimated using the modified side-looking Barnes radiometer on the NOAA P3s, a significant fraction of both updraft and downdraft cores had apparent virtual temperatures greater than their environments. In fact, the average virtual temperature deviation from the environment for downdraft cores was +0.4 K.
Sixteen of the strongest downdraft cores were examined, all of which had positive virtual-temperature deviations, to find the source of this surprising result. It is concluded that the downdraft cores are artificially warm because 100% relative humidity was assumed in calculating virtual temperature. However, reducing core mixing ratios to more physically realistic values does not eliminate warm virtual potential temperature downdraft cores, nor does water loading make all cores negatively buoyant. Thus positively buoyant convective downdrafts do exist, though probably in smaller numbers than previously suggested.
Abstract
Time series of 1-Hz vertical velocity data collected during aircraft penetrations of oceanic cumulonimbus clouds over the western Pacific warm pool as part of the Equatorial Mesoscale Experiment (EMEX) are analyzed for updraft and downdraft events called cores. An updraft core is defined as occurring whenever the vertical velocity exceeds 1 m s−1 for at least 500 m. A downdraft core is defined analogously. Over 19 000 km of straight and level flight legs are used in the analysis. Five hundred eleven updraft cores and 253 downdraft cores are included in the dataset.
Core properties are summarized as distributions of average and maximum vertical velocity, diameter, and mass flux in four altitude intervals between 0.2 and 5.8 km. Distributions are approximately lognormal at all levels. Examination of the variation of the statistics with height suggests a maximum in vertical velocity between 2 and 3 km; slightly lower or equal vertical velocity is indicated at 5 km. Near the freezing level, virtual temperature deviations are found to be slightly positive for both updraft and downdraft cores. The excess in updraft cores is much smaller than that predicted by parcel theory.
Comparisons with other studies that use the same analysis technique reveal that EMEX cores have approximately the same strength as cores of other oceanic areas, despite warmer sea surface temperatures. Diameter and mass flux are greater than those in GATE but smaller than those in hurricane rainbands. Oceanic cores are much weaker and appear to be slightly smaller than those observed over land during the Thunderstorm Project.
The markedly weaker oceanic vertical velocities below 5.8 km (compared to the continental cores) cannot be attributed to smaller total convective available potential energy or to very high water loading. Rather, the authors suggest that water loading, although less than adiabatic, is more effective in reducing buoyancy of oceanic cores because of the smaller potential buoyancy below 5.8 km. Entrainment appears to be more effective in reducing buoyancy to well below adiabatic values in oceanic cores, a result consistent with the smaller oceanic core diameters in the lower cloud layer. It is speculated further that core diameters are related to boundary layer depth, which is clearly smaller over the oceans.
Abstract
Time series of 1-Hz vertical velocity data collected during aircraft penetrations of oceanic cumulonimbus clouds over the western Pacific warm pool as part of the Equatorial Mesoscale Experiment (EMEX) are analyzed for updraft and downdraft events called cores. An updraft core is defined as occurring whenever the vertical velocity exceeds 1 m s−1 for at least 500 m. A downdraft core is defined analogously. Over 19 000 km of straight and level flight legs are used in the analysis. Five hundred eleven updraft cores and 253 downdraft cores are included in the dataset.
Core properties are summarized as distributions of average and maximum vertical velocity, diameter, and mass flux in four altitude intervals between 0.2 and 5.8 km. Distributions are approximately lognormal at all levels. Examination of the variation of the statistics with height suggests a maximum in vertical velocity between 2 and 3 km; slightly lower or equal vertical velocity is indicated at 5 km. Near the freezing level, virtual temperature deviations are found to be slightly positive for both updraft and downdraft cores. The excess in updraft cores is much smaller than that predicted by parcel theory.
Comparisons with other studies that use the same analysis technique reveal that EMEX cores have approximately the same strength as cores of other oceanic areas, despite warmer sea surface temperatures. Diameter and mass flux are greater than those in GATE but smaller than those in hurricane rainbands. Oceanic cores are much weaker and appear to be slightly smaller than those observed over land during the Thunderstorm Project.
The markedly weaker oceanic vertical velocities below 5.8 km (compared to the continental cores) cannot be attributed to smaller total convective available potential energy or to very high water loading. Rather, the authors suggest that water loading, although less than adiabatic, is more effective in reducing buoyancy of oceanic cores because of the smaller potential buoyancy below 5.8 km. Entrainment appears to be more effective in reducing buoyancy to well below adiabatic values in oceanic cores, a result consistent with the smaller oceanic core diameters in the lower cloud layer. It is speculated further that core diameters are related to boundary layer depth, which is clearly smaller over the oceans.
Abstract
The structure of the convective band of 14 September in the dense GATE observing array is determined using wind and thermodynamic data primarily from multiple aircraft penetrations, which are well distributed in the vertical and in time.
The well-defined mesoscale features in the line, which are 10–40 km in scale, quasi-two-dimensional, and persist for several hours, determine the distribution of the convective-scale features, which are 5 km or less in size, three-dimensional, not generally detectable for more than one flight leg. At the leading edge, a 30 km zone of strong ascent is computed from two-dimensional continuity. Here, lifting of the ambient air creates a favorable environment—not found elsewhere—for deep cumulonimbus clouds to develop. Their updrafts are weak, 2–4 m s−1 on the average. Behind the updraft zone, below 3–4 km, is a broad descent zone. It corresponds to the stratiform rain area, and has little convection, and some drying at lower levels. On the average, the mass flux by the mesoscale and convective-scale drafts of the updraft zone is about twice as much as that of the descent zone. The rainfall rate in the updraft zone is generally in excess of 8 mm h−1, while that in the downdraft region is less. The horizontal winds normal to the line are strongly modified by pressure forces, while those parallel to the line are changed mainly through mixing. Strong vertical vorticity is created in the line by tilting of the mean shear of the parallel component.
As the system matures, the downdraft mass flux increases relative to the updraft mass flux, so that the net mass flux becomes negative during the decay phase. The fraction of the total rain falling in the stratiform zone increases with time. However, considerable rain still falls from intense convective cells as well as the stratiform “anvil” even when the net mass flux goes to zero in the lowest kilometer.
The structure and evolution of the line is similar to that of tropical squall lines, but it is less spectacular. Winds are weaker, there is less mass flow through the system, movement is slower, and there is less drying in the rain area. The line is aligned with the wind and shear, rather than across it, as is the case for many squall lines.
Abstract
The structure of the convective band of 14 September in the dense GATE observing array is determined using wind and thermodynamic data primarily from multiple aircraft penetrations, which are well distributed in the vertical and in time.
The well-defined mesoscale features in the line, which are 10–40 km in scale, quasi-two-dimensional, and persist for several hours, determine the distribution of the convective-scale features, which are 5 km or less in size, three-dimensional, not generally detectable for more than one flight leg. At the leading edge, a 30 km zone of strong ascent is computed from two-dimensional continuity. Here, lifting of the ambient air creates a favorable environment—not found elsewhere—for deep cumulonimbus clouds to develop. Their updrafts are weak, 2–4 m s−1 on the average. Behind the updraft zone, below 3–4 km, is a broad descent zone. It corresponds to the stratiform rain area, and has little convection, and some drying at lower levels. On the average, the mass flux by the mesoscale and convective-scale drafts of the updraft zone is about twice as much as that of the descent zone. The rainfall rate in the updraft zone is generally in excess of 8 mm h−1, while that in the downdraft region is less. The horizontal winds normal to the line are strongly modified by pressure forces, while those parallel to the line are changed mainly through mixing. Strong vertical vorticity is created in the line by tilting of the mean shear of the parallel component.
As the system matures, the downdraft mass flux increases relative to the updraft mass flux, so that the net mass flux becomes negative during the decay phase. The fraction of the total rain falling in the stratiform zone increases with time. However, considerable rain still falls from intense convective cells as well as the stratiform “anvil” even when the net mass flux goes to zero in the lowest kilometer.
The structure and evolution of the line is similar to that of tropical squall lines, but it is less spectacular. Winds are weaker, there is less mass flow through the system, movement is slower, and there is less drying in the rain area. The line is aligned with the wind and shear, rather than across it, as is the case for many squall lines.
Abstract
No abstract available.
Abstract
No abstract available.