Search Results

You are looking at 31 - 32 of 32 items for

  • Author or Editor: Michael Black x
  • Refine by Access: All Content x
Clear All Modify Search
James D. Doyle, Jonathan R. Moskaitis, Joel W. Feldmeier, Ronald J. Ferek, Mark Beaubien, Michael M. Bell, Daniel L. Cecil, Robert L. Creasey, Patrick Duran, Russell L. Elsberry, William A. Komaromi, John Molinari, David R. Ryglicki, Daniel P. Stern, Christopher S. Velden, Xuguang Wang, Todd Allen, Bradford S. Barrett, Peter G. Black, Jason P. Dunion, Kerry A. Emanuel, Patrick A. Harr, Lee Harrison, Eric A. Hendricks, Derrick Herndon, William Q. Jeffries, Sharanya J. Majumdar, James A. Moore, Zhaoxia Pu, Robert F. Rogers, Elizabeth R. Sanabia, Gregory J. Tripoli, and Da-Lin Zhang

Abstract

Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes.

Open access
Emily Shroyer, Amit Tandon, Debasis Sengupta, Harindra J.S. Fernando, Andrew J. Lucas, J. Thomas Farrar, Rajib Chattopadhyay, Simon de Szoeke, Maria Flatau, Adam Rydbeck, Hemantha Wijesekera, Michael McPhaden, Hyodae Seo, Aneesh Subramanian, R Venkatesan, Jossia Joseph, S. Ramsundaram, Arnold L. Gordon, Shannon M. Bohman, Jaynise Pérez, Iury T. Simoes-Sousa, Steven R. Jayne, Robert E. Todd, G.S. Bhat, Matthias Lankhorst, Tamara Schlosser, Katherine Adams, S.U.P Jinadasa, Manikandan Mathur, M. Mohapatra, E. Pattabhi Rama Rao, A. K. Sahai, Rashmi Sharma, Craig Lee, Luc Rainville, Deepak Cherian, Kerstin Cullen, Luca R. Centurioni, Verena Hormann, Jennifer MacKinnon, Uwe Send, Arachaporn Anutaliya, Amy Waterhouse, Garrett S. Black, Jeremy A. Dehart, Kaitlyn M. Woods, Edward Creegan, Gad Levy, Lakshmi H Kantha, and Bulusu Subrahmanyam

Capsule

The MISO-BoB program sampled oceanic and atmospheric conditions during the transition from active to break conditions subsequent to the onset of the 2018 summer monsoon in the Bay of Bengal.

Full access