Search Results

You are looking at 31 - 40 of 58 items for

  • Author or Editor: Paul M. Markowski x
  • Refine by Access: All Content x
Clear All Modify Search
Richard P. James
,
Paul M. Markowski
, and
J. Michael Fritsch

Abstract

Bow echo development within quasi-linear convective systems is investigated using a storm-scale numerical model. A strong sensitivity to the ambient water vapor mixing ratio is demonstrated. Relatively dry conditions at low and midlevels favor intense cold-air production and strong cold pool development, leading to upshear-tilted, “slab-like” convection for various magnitudes of convective available potential energy (CAPE) and low-level shear. High relative humidity in the environment tends to reduce the rate of production of cold air, leading to weak cold pools and downshear-tilted convective systems, with primarily cell-scale three-dimensionality in the convective region. At intermediate moisture contents, long-lived, coherent bowing segments are generated within the convective line. In general, the scale of the coherent three-dimensional structures increases with increasing cold pool strength.

The bowing lines are characterized in their developing and mature stages by segments of the convective line measuring 15–40 km in length over which the cold pool is much stronger than at other locations along the line. The growth of bow echo structures within a linear convective system appears to depend critically on the local strengthening of the cold pool to the extent that the convection becomes locally upshear tilted. A positive feedback process is thereby initiated, allowing the intensification of the bow echo. If the environment favors an excessively strong cold pool, however, the entire line becomes uniformly upshear tilted relatively quickly, and the along-line heterogeneity of the bowing line is lost.

Full access
Richard P. James
,
J. Michael Fritsch
, and
Paul M. Markowski

Abstract

The organizational mode of quasi-linear convective systems often falls within a spectrum of modes described by a line of discrete cells on one end (“cellular”) and an unbroken two-dimensional swath of ascent on the other (“slabular”). Convective events exhibiting distinctly cellular or slabular characteristics over the continental United States were compiled, and composite soundings of the respective inflow environments were constructed. The most notable difference between the environments of slabs and cells occurred in the wind profiles; lines organized as slabs existed in much stronger low-level line-relative inflow and stronger low-level shear.

A compressible model with high resolution (Δx = 500 m) was used to investigate the effects of varying environmental conditions on the nature of the convective overturning. The numerical results show that highly cellular convective lines are favored when the environmental conditions and initiation procedure allow the convectively generated cold pools to remain separate from one another. The transition to a continuous along-line cold pool and gust front leads to the generation of a more “solid” line of convection, as dynamic pressure forcing above the downshear edge of the cold outflow creates a swath of quasi-two-dimensional ascent. Using both full-physics simulations and a simplified cold-pool model, it is demonstrated that the magnitude of the two-dimensional ascent in slabular convective systems is closely related to the integrated cold-pool strength.

It is concluded that slabular organization tends to occur under conditions that favor the development of a strong, contiguous cold pool. The tendency to produce slabular convection is therefore enhanced by environmental conditions such as large CAPE, weak convective inhibition, strong along-line winds, and moderately strong cross-line wind shear.

Full access
Richard Rotunno
,
Paul M. Markowski
, and
George H. Bryan

Abstract

Numerical models of supercell thunderstorms produce near-ground rotation about a vertical axis (i.e., vertical vorticity) after the development of rain-cooled outflows and downdrafts. The physical processes involved in the production of near-ground vertical vorticity in simulated supercells have been a subject of discussion in the literature for over 30 years. One cause for this lengthy discussion is the difficulty in applying the principles of inviscid vorticity dynamics in a continuous fluid to the viscous evolution of discrete Eulerian simulations. The present paper reports on a Lagrangian analysis of near-ground vorticity from an idealized-supercell simulation with enhanced vertical resolution near the lower surface. The parcel that enters the low-level maximum of vertical vorticity has a history of descent during which its horizontal vorticity is considerably enhanced. In its final approach to this region, the parcel’s enhanced horizontal vorticity is tilted to produce vertical vorticity, which is then amplified through vertical stretching as the parcel rises. A simplified theoretical model is developed that exhibits these same features. The principal conclusion is that vertical vorticity at the parcel’s nadir (its lowest point), although helpful, does not need to be positive for rapid near-surface amplification of vertical vorticity.

Full access
Aaron Wang
,
Ying Pan
,
George H. Bryan
, and
Paul M. Markowski

Abstract

Unsteadiness and horizontal heterogeneities frequently characterize atmospheric motions, especially within convective storms, which are frequently studied using large-eddy simulations (LES). The models of near-surface turbulence employed by atmospheric LES, however, predominantly assume statistically steady and horizontally homogeneous conditions (known as the equilibrium approach). The primary objective of this work is to investigate the potential consequences of such unrealistic assumptions in simulations of tornadoes. Cloud Model 1 (CM1) LES runs are performed using three approaches to model near-surface turbulence: the “semi-slip” boundary condition (which is the most commonly used equilibrium approach), a recently proposed nonequilibrium approach that accounts for some of the effects of turbulence memory, and a nonequilibrium approach based on thin boundary layer equations (TBLE) originally proposed by the engineering community for smooth-wall boundary layer applications. To be adopted for atmospheric applications, the TBLE approach is modified to account for the surface roughness. The implementation of TBLE into CM1 is evaluated using LES results of an idealized, neutral atmospheric boundary layer. LES runs are then performed for an idealized tornado characterized by rapid evolution, strongly curved air parcel trajectories, and substantial horizontal heterogeneities. The semi-slip boundary condition, by design, always yields a surface shear stress opposite the horizontal wind at the lowest LES grid level. The nonequilibrium approaches of modeling near-surface turbulence allow for a range of surface-shear-stress directions and enhance the resolved turbulence and wind gusts. The TBLE approach even occasionally permits kinetic energy backscatter from unresolved to resolved scales.

Significance Statement

The traditional approach of modeling the near-surface turbulence is not suitable for a tornado characterized by rapid evolution, strongly curved air parcel trajectories, and substantial horizontal heterogeneities. To understand the influence of statistically unsteady and horizontally heterogeneous near-surface conditions on tornadoes, this work adopts a fairly sophisticated approach from the engineering community and implements it into a widely used atmospheric model with necessary modifications. Compared to the traditional approach, the newly implemented approach produces more turbulent near-surface winds, more flexible surface-drag directions, and stronger wind gusts. These findings suggest a simulated tornado is very sensitive to the modeling approach of near-surface turbulence.

Restricted access
Shawn S. Murdzek
,
Paul M. Markowski
, and
Yvette P. Richardson

Abstract

Recent high-resolution numerical simulations of supercells have identified a feature referred to as the streamwise vorticity current (SVC). Some have presumed the SVC to play a role in tornadogenesis and maintenance, though observations of such a feature have been limited. To this end, 125-m dual-Doppler wind syntheses and mobile mesonet observations are used to examine three observed supercells for evidence of an SVC. Two of the three supercells are found to contain a feature similar to an SVC, while the other supercell contains an antistreamwise vorticity ribbon on the southern fringe of the forward flank. A closer examination of the two supercells with SVCs reveals that the SVCs are located on the cool side of boundaries within the forward flank that separate colder, more turbulent flow from warmer, more laminar flow, similar to numerical simulations. Furthermore, the observed SVCs are similar to those in simulations in that they appear to be associated with baroclinic vorticity generation and have similar appearances in vertical cross sections. Aside from some apparent differences in the location of the maximum streamwise vorticity between simulated and observed SVCs, the SVCs seen in numerical simulations are indeed similar to reality. The SVC, however, may not be essential for tornadogenesis, at least for weak tornadoes, because the supercell that did not have a well-defined SVC produced at least one brief, weak tornado during the analysis period.

Full access
Paul M. Markowski
,
Timothy P. Hatlee
, and
Yvette P. Richardson

Abstract

The 12 May 2010 supercell thunderstorm intercepted by the Second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) is analyzed during a time period of strong low-level rotation in which dual-Doppler radar observations were collected. Two different cyclonic vortices are documented. The first vortex was “marginally tornadic” before abruptly weakening, following the development of a descending reflectivity core (DRC) similar to those that have been documented in past studies of supercells. The second vortex rapidly developed immediately north of the DRC shortly after the DRC reached low altitudes, and was associated with a tornado that produced damage near Clinton, Oklahoma. The paper explores the possible roles of the first vortex in triggering the DRC, the DRC in the subsequent initiation of a new updraft pulse on its flank, and the updraft pulse on the development of the second, stronger vortex. The Clinton storm case is, unfortunately, a nice example of the challenges in predicting tornadogenesis within supercell storms even in environments understood to be favorable for tornadoes.

Full access
Elissa A. Bartos
,
Paul M. Markowski
, and
Yvette P. Richardson

Abstract

This study analyzes aboveground thermodynamic observations in three tornadic supercells obtained via swarms of small balloon-borne sondes acting as pseudo-Lagrangian drifters; the storm-relative winds draw the sondes through the precipitation, outflow, and baroclinic zones, which are believed to play key roles in tornado formation. Three-dimensional thermodynamic analyses are produced from the in situ observations. The coldest air is found at the lowest analysis levels, where virtual potential temperature deficits of 2–5 K are observed. Air parcels within the forward-flank outflow are inferred from their equivalent potential temperatures to have descended only a few hundred meters or less, whereas parcels within the rear-flank outflow are inferred to have downward excursions of 1–2 km. Additionally, the parcels following paths toward the low-level mesocyclone pass through horizontal buoyancy gradients that are strongest in the lowest 750 m and estimated to be capable of baroclinically generating horizontal vorticity having a magnitude of 6–10 × 10−3 s−1. A substantial component of the baroclinically generated vorticity is initially crosswise, though the vorticity subsequently could become streamwise given the leftward bending of the airstream in which the vorticity is generated. The baroclinically generated vorticity could contribute to tornado formation upon being tilted upward and stretched near the surface beneath a strong, dynamically forced updraft.

Significance Statement

Swarms of balloon-borne probes are used to produce the first-ever, three-dimensional mappings of temperature from in situ observations within supercell storms (rotating storms with high tornado potential). Temperature has a strong influence on the buoyancy of air, and horizontal variations of buoyancy generate spin about a horizontal axis. Buoyancy is one of the primary drivers of upward and downward motions in thunderstorms, and in supercell storms, horizontally oriented spin can be tipped into the vertical and amplified by certain arrangements of upward and downward motions. Unfortunately, the long-standing lack of temperature observations has hampered scientists’ ability to evaluate computer simulations and the tornadogenesis theories derived from them. We find that significant spin could be generated by the horizontal buoyancy variations sampled by the probes.

Full access
Abdullah Kahraman
,
Şeyda Tilev-Tanriover
,
Mikdat Kadioglu
,
David M. Schultz
, and
Paul M. Markowski

Abstract

A climatology of severe hail (diameter equal to or exceeding approximately 1.5 cm) for Turkey is constructed from official severe weather reports from meteorological stations, newspaper archives, and Internet sources. The dataset consists of 1489 severe hail cases on 1107 severe hail days (days with at least one severe hail case) during 1925–2014. Severe hail was reported most often in the 1960s, followed by a decrease until the 2000s, and an ensuing increase in the past decade. Severe hail is most likely to occur in the afternoon and evening, and in spring and summer, particularly May and June. The geographical distribution implies that almost all of Turkey is prone to severe hailstorms. In 8.3% of the severe hail cases, very large hailstones (diameter equal to or exceeding approximately 4.5 cm) were observed.

Full access
Paul M. Markowski
,
Erik N. Rasmussen
,
Jerry M. Straka
, and
David C. Dowell

Abstract

Low-level cooling beneath the cirrus anvil canopies of supercell thunderstorms is documented in two Verification of the Origins of Rotation in Tornadoes Experiment cases and in the 17 May 1981 Arcadia, Oklahoma, supercell. Surface temperature decreases of 3°C or more occurred beneath the anvils within 45 min of the onset of overcast conditions. Cooling was confined to the lowest few hundred meters of the boundary layer, and believed to be due mainly to a deficit in the energy budget following a reduction of incoming shortwave radiation. In the three cases studied, the vertical wind shear was strong; thus, mixing prevented the formation of an inversion layer.

Strong insolation at the ground outside of the anvil shadows coupled with the cooling beneath the cirrus canopies led to corridors of baroclinity along the shadow edges. It is shown that residence times in these baroclinic zones may be long enough for parcels to acquire considerable horizontal vorticity (e.g., ∼10−2 s−1) en route to a storm updraft. Enhancement of the horizontal vorticity of parcels ingested by an updraft may have implications for the dynamics of storm rotation.

Full access
Paul M. Markowski
,
Jerry M. Straka
,
Erik N. Rasmussen
, and
David O. Blanchard

Abstract

In this paper, storm-relative helicity (SRH) and low-level vertical shear of the horizontal wind fields were investigated on the mesoscale and stormscale in regions where tornadoes occurred for four case studies using data collected during the Verification of the Origin of Rotation in Tornadoes Experiment. A primary finding was that SRH was highly variable in both time and space in all of the cases, suggesting that this parameter might be difficult to use to predict which storms might become tornadic given the available National Weather Service upper-air wind data. Second, it was also found that the shear between the lowest mean 500-m wind and the 6-km wind was fairly uniform over vast regions in all of the four cases studied; thus, this parameter provided little guidance other than that there was possibly enough shear to support supercells. It was contended that forecasters will need to monitor low-level features, such as boundaries or wind accelerations, which might augment streamwise vorticity ingested into storms. Finally, it was suggested that one reason why one storm might produce a tornado while a nearby one does not might be due to the large variations in SRH on very small spatial and temporal scales. In other words, only those storms that move into regions, small or large, with sufficient SRH might produce tornadoes.

Full access