Search Results

You are looking at 31 - 40 of 55 items for

  • Author or Editor: Peter A. Stott x
  • Refine by Access: All Content x
Clear All Modify Search
Stephanie C. Herring
,
Nikolaos Christidis
,
Andrew Hoell
,
Martin P. Hoerling
, and
Peter A. Stott

Abstract

Editors note: For easy download the posted pdf of the Explaining Extreme Events of 2018 is a very low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.

Free access
Lianchun Song
,
Siyan Dong
,
Ying Sun
,
Guoyu Ren
,
Botao Zhou
, and
Peter A. Stott
Full access
Stephanie C. Herring
,
Martin P. Hoerling
,
James P. Kossin
,
Thomas C. Peterson
, and
Peter A. Stott
Full access
Stephanie C. Herring
,
Martin P. Hoerling
,
James P. Kossin
,
Thomas C. Peterson
, and
Peter A. Stott
Full access
Stephanie C. Herring
,
Martin P. Hoerling
,
James P. Kossin
,
Thomas C. Peterson
, and
Peter A. Stott

Editors note: For easy download the posted pdf of the Explaining Extreme Events of 2014 is a very low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.

Full access
Stephanie C. Herring
,
Nikolaos Christidis
,
Andrew Hoell
,
Martin P. Hoerling
, and
Peter A. Stott

Abstract

Editors note: For easy download the posted pdf of the Explaining Extreme Events of 2019 is a very low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.

Open access
Peter A. Stott
,
Gareth S. Jones
,
Jason A. Lowe
,
Peter Thorne
,
Chris Durman
,
Timothy C. Johns
, and
Jean-Claude Thelen

Abstract

The ability of climate models to simulate large-scale temperature changes during the twentieth century when they include both anthropogenic and natural forcings and their inability to account for warming over the last 50 yr when they exclude increasing greenhouse gas concentrations has been used as evidence for an anthropogenic influence on global warming. One criticism of the models used in many of these studies is that they exclude some forcings of potential importance, notably from fossil fuel black carbon, biomass smoke, and land use changes. Herein transient simulations with a new model, the Hadley Centre Global Environmental Model version 1 (HadGEM1), are described, which include these forcings in addition to other anthropogenic and natural forcings, and a fully interactive treatment of atmospheric sulfur and its effects on clouds. These new simulations support previous work by showing that there was a significant anthropogenic influence on near-surface temperature change over the last century. They demonstrate that black carbon and land use changes are relatively unimportant for explaining global mean near-surface temperature changes.

The pattern of warming in the troposphere and cooling in the stratosphere that has been observed in radiosonde data since 1958 can only be reproduced when the model includes anthropogenic forcings. However, there are some discrepancies between the model simulations and radiosonde data, which are largest where observational uncertainty is greatest in the Tropics and high latitudes.

Predictions of future warming have also been made using the new model. Twenty-first-century warming rates, following policy-relevant emissions scenarios, are slightly greater in HadGEM1 than in the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) as a result of the extra forcing in HadGEM1. An experiment in which greenhouse gases and other anthropogenic forcings are stabilized at 2100 levels and held constant until 2200 predicts a committed twenty-second-century warming of less than 1 K, whose spatial distribution resembles that of warming during the twenty-first century, implying that the local feedbacks that determine the pattern of warming do not change significantly.

Full access
Nikolaos Christidis
,
Peter A. Stott
,
Adam A. Scaife
,
Alberto Arribas
,
Gareth S. Jones
,
Dan Copsey
,
Jeff R. Knight
, and
Warren J. Tennant

Abstract

A new system for attribution of weather and climate extreme events has been developed based on the atmospheric component of the latest Hadley Centre model. The model is run with either observational data of sea surface temperature and sea ice or estimates of what their values would be without the effect of anthropogenic climatic forcings. In that way, ensembles of simulations are produced that represent the climate with and without the effect of human influences. A comparison between the ensembles provides estimates of the change in the frequency of extremes due to anthropogenic forcings. To evaluate the new system, reliability diagrams are constructed, which compare the model-derived probability of extreme events with their observed frequency. The ability of the model to reproduce realistic distributions of relevant climatic variables is another key aspect of the system evaluation. Results are then presented from analyses of three recent high-impact events: the 2009/10 cold winter in the United Kingdom, the heat wave in Moscow in July 2010, and floods in Pakistan in July 2010. An evaluation assessment indicates the model can provide reliable results for the U.K. and Moscow events but not for Pakistan. It is found that without anthropogenic forcings winters in the United Kingdom colder than 2009/10 would be 7–10 times (best estimate) more common. Although anthropogenic forcings increase the likelihood of heat waves in Moscow, the 2010 event is found to be very uncommon and associated with a return time of several hundred years. No reliable attribution assessment can be made for high-precipitation events in Pakistan.

Full access
Peter A. Stott
,
John F. B. Mitchell
,
Myles R. Allen
,
Thomas L. Delworth
,
Jonathan M. Gregory
,
Gerald A. Meehl
, and
Benjamin D. Santer

Abstract

This paper investigates the impact of aerosol forcing uncertainty on the robustness of estimates of the twentieth-century warming attributable to anthropogenic greenhouse gas emissions. Attribution analyses on three coupled climate models with very different sensitivities and aerosol forcing are carried out. The Third Hadley Centre Coupled Ocean–Atmosphere GCM (HadCM3), Parallel Climate Model (PCM), and GFDL R30 models all provide good simulations of twentieth-century global mean temperature changes when they include both anthropogenic and natural forcings. Such good agreement could result from a fortuitous cancellation of errors, for example, by balancing too much (or too little) greenhouse warming by too much (or too little) aerosol cooling.

Despite a very large uncertainty for estimates of the possible range of sulfate aerosol forcing obtained from measurement campaigns, results show that the spatial and temporal nature of observed twentieth-century temperature change constrains the component of past warming attributable to anthropogenic greenhouse gases to be significantly greater (at the 5% level) than the observed warming over the twentieth century. The cooling effects of aerosols are detected in all three models.

Both spatial and temporal aspects of observed temperature change are responsible for constraining the relative roles of greenhouse warming and sulfate cooling over the twentieth century. This is because there are distinctive temporal structures in differential warming rates between the hemispheres, between land and ocean, and between mid- and low latitudes. As a result, consistent estimates of warming attributable to greenhouse gas emissions are obtained from all three models, and predictions are relatively robust to the use of more or less sensitive models. The transient climate response following a 1% yr−1 increase in CO2 is estimated to lie between 2.2 and 4 K century−1 (5–95 percentiles).

Full access
Y. T. Eunice Lo
,
Daniel M. Mitchell
,
Sylvia I. Bohnenstengel
,
Mat Collins
,
Ed Hawkins
,
Gabriele C. Hegerl
,
Manoj Joshi
, and
Peter A. Stott

Abstract

In the United Kingdom, where 90% of residents are projected to live in urban areas by 2050, projecting changes in urban heat islands (UHIs) is essential to municipal adaptation. Increased summer temperatures are linked to increased mortality. Using the new regional U.K. Climate Projections, UKCP18-regional, we estimate the 1981–2079 trends in summer urban and rural near-surface air temperatures and in UHI intensities during day and at night in the 10 most populous built-up areas in England. Summer temperatures increase by 0.45°–0.81°C per decade under RCP8.5, depending on the time of day and location. Nighttime temperatures increase more in urban than rural areas, enhancing the nighttime UHI by 0.01°–0.05°C per decade in all cities. When these upward UHI signals emerge from 2008–18 variability, positive summer nighttime UHI intensities of up to 1.8°C are projected in most cities. However, we can prevent most of these upward nighttime UHI signals from emerging by stabilizing climate to the Paris Agreement target of 2°C above preindustrial levels. In contrast, daytime UHI intensities decrease in nine cities, at rates between −0.004° and −0.05°C per decade, indicating a trend toward a reduced daytime UHI effect. These changes reflect different feedbacks over urban and rural areas and are specific to UKCP18-regional. Future research is important to better understand the drivers of these UHI intensity changes.

Free access