Search Results

You are looking at 31 - 39 of 39 items for

  • Author or Editor: Rebecca E. Morss x
  • Refine by Access: All Content x
Clear All Modify Search
Cara L. Cuite
,
Rebecca E. Morss
,
Julie L. Demuth
, and
William K. Hallman

Abstract

Both hurricanes and nor’easters can be destructive and deadly. The current study investigates whether, when all other features of a storm warning message are held constant, people perceive the risks posed by nor’easters and hurricanes differently and whether these differences affect their attitudes and decisions about taking protective action. We conducted an online experiment involving 1,700 Americans residing in northeastern coastal ZIP codes to test the effects of storm type (hurricane vs nor’easter). Participants were told that their area was under an evacuation order due to either a predicted hurricane or nor’easter. Reported message comprehension and perceived relevance were similar across storm type; however, storm type had small but significant effects on other dependent measures. Those in the hurricane condition were more likely to believe the storm would be severe (p = 0.007). They were also more likely to say that it is important to evacuate, that they would evacuate their homes, and that they would recommend to their neighbors that they evacuate (p < 0.001). Additional analysis demonstrated that the effect of storm type on evacuation likelihood is mediated, at least in part, by perceived severity. These findings provide evidence that people perceive hurricanes as more severe and more likely to require taking protective action than nor’easters, even when other attributes of the storms remain the same. Forecasters, broadcast meteorologists, and emergency management professionals should consider these small but important differences in perceptions when communicating about these types of storms.

Full access
Julie L. Demuth
,
Jamie Vickery
,
Heather Lazrus
,
Jen Henderson
,
Rebecca E. Morss
, and
Kevin D. Ash

Abstract

The weather community has a keen interest in whether or not people comply with tornado warnings by taking shelter when a tornado threatens. When people do not seek shelter, a commonly attributed reason is that they are complacent due to overwarning, false alarms, routine exposure and experience with tornadoes and warnings, or time between damaging events. Yet, there is a lack of research that focuses on whether people are actually complacent, i.e., whether they ignore or are unwilling to prepare for the threat. We explore whether people exhibit these indicators of complacency by examining how people assessed their risk and responded during real-world tornado threats and how vulnerability influenced these processes. Our analysis is based on in-person interviews with 23 survivors of two deadly EF3 tornadoes that occurred approximately 50 miles apart and within 12 h of each other. Contrary to a threat-disbelieving, threat-ignoring, nonpreparing, and thus complacent public, we instead found that people actively managed their risk from the tornadoes, meaning they actively attended to, evaluated, and responded to the tornado risk as it evolved in space and time. We further found, however, that many people felt limited or lack of efficacy to respond due to static and situational factors that resulted in them having no safe place to seek protection from the threat. Based on this rich, nuanced analysis, we provide recommendations about important ways that the weather community and its partners can mitigate the risks people face from tornadoes, now and in the long term.

Full access
Stephen B. Broomell
,
Gabrielle Wong-Parodi
,
Rebecca E. Morss
, and
Julie L. Demuth

Abstract

Reducing fatalities from tornadoes in the southeastern United States requires considering multiple societal factors, including the risk perceptions that influence how people interpret tornado forecasts and warnings and make protective decisions. This study investigates perceptions of tornado risk in the southeastern United States, operationalized as judgments of tornado likelihood. While it is possible that residents of the Southeast could learn about tornado likelihood in their region from observing the local environment, cognitive-ecological theory from psychology suggests that such judgments of likelihood can be inaccurate, even if other aspects of local knowledge are accurate. This study analyzes data from a survey that elicited different groups’ judgments of tornado likelihood associated with different seasons, times of day, and storm system types. Results are presented from a representative sample of Southeastern residents and are compared with a sample of tornado experts (who have extensive knowledge about the likelihood of Southeastern tornadoes) and a representative sample of Great Plains residents. Overall, the analysis finds that many members of the Southeastern public deviate from the expert sample on tornado likelihood, especially for winter and overnight tornadoes. These deviations from expert opinion mimic the judgments of the Great Plains public. This study demonstrates how psychological theory and a decision science approach can be used to identify potential gaps in public knowledge about hazardous weather risks, and it reveals several such potential gaps. Further research is needed to understand the reasons for deviations between public and expert judgments, evaluate their effects on protective decision-making, and develop strategies to address them.

Free access
Rebecca E. Morss
,
Jeffrey K. Lazo
,
Barbara G. Brown
,
Harold E. Brooks
,
Philip T. Ganderton
, and
Brian N. Mills

Despite the meteorological community's long-term interest in weather-society interactions, efforts to understand socioeconomic aspects of weather prediction and to incorporate this knowledge into the weather prediction system have yet to reach critical mass. This article aims to reinvigorate interest in societal and economic research and applications (SERA) activities within the meteorological and social science communities by exploring key SERA issues and proposing SERA priorities for the next decade.

The priorities were developed by the authors, building on previous work, with input from a diverse group of social scientists and meteorologists who participated in a SERA workshop in August 2006. The workshop was organized to provide input to the North American regional component of THORPEX: A Global Atmospheric Research Programme, but the priorities identified are broadly applicable to all weather forecast research and applications.

To motivate and frame SERA activities, we first discuss the concept of high-impact weather forecasts and the chain from forecast creation to value realization. Next, we present five interconnected SERA priority themes—use of forecast information in decision making, communication of forecast uncertainty, user-relevant verification, economic value of forecasts, and decision support— and propose research integrated across the themes.

SERA activities can significantly improve understanding of weather-society interactions to the benefit of the meteorological community and society. However, reaching this potential will require dedicated effort to bring together and maintain a sustainable interdisciplinary community.

Full access
Julie L. Demuth
,
Rebecca E. Morss
,
Leysia Palen
,
Kenneth M. Anderson
,
Jennings Anderson
,
Marina Kogan
,
Kevin Stowe
,
Melissa Bica
,
Heather Lazrus
,
Olga Wilhelmi
, and
Jen Henderson

Abstract

This article investigates the dynamic ways that people communicate, assess, and respond as a weather threat evolves. It uses social media data, which offer unique records of what people convey about their real-world risk contexts. Twitter narratives from 53 people who were in a mandatory evacuation zone in a New York City neighborhood during Hurricane Sandy in 2012 were qualitatively analyzed. The study provides rich insight into the complex, dynamic information behaviors and risk assessments of people at risk, and it illustrates how social media data can be collected, sampled, and analyzed to help provide this understanding. Results show that this sample of people at significant risk attended to forecast information and evacuation orders as well as multiple types of social and environmental cues. Although many tweeted explicitly about the mandatory evacuation order, forecast information was usually referenced only implicitly. Social and environmental cues grew more important as the threat approached and often triggered heightened risk perceptions or protective actions. The results also reveal the importance of different aspects of people’s cognitive and affective risk perceptions as well as specific emotions (e.g., fear, anger) for understanding risk assessments. People discussed a variety of preparatory and protective behavioral responses and exhibited multiple types of coping responses (e.g., humor) as the threat evolved. People’s risk assessments and responses were closely intertwined, and their risk perceptions were not continuously elevated as the hurricane approached; they exhibited different ways of interpreting, coping, and responding as they accessed and processed evolving information about the threat.

Full access
Rebecca E. Morss
,
Julie L. Demuth
,
Jeffrey K. Lazo
,
Katherine Dickinson
,
Heather Lazrus
, and
Betty H. Morrow

Abstract

This study uses data from a survey of coastal Miami-Dade County, Florida, residents to explore how different types of forecast and warning messages influence evacuation decisions, in conjunction with other factors. The survey presented different members of the public with different test messages about the same hypothetical hurricane approaching Miami. Participants’ responses to the information were evaluated using questions about their likelihood of evacuating and their perceptions of the information and the information source. Recipients of the test message about storm surge height and the message about extreme impacts from storm surge had higher evacuation intentions, compared to nonrecipients. However, recipients of the extreme-impacts message also rated the information as more overblown and the information source as less reliable. The probabilistic message about landfall location interacted with the other textual messages in unexpected ways, reducing the other messages’ effects on evacuation intentions. These results illustrate the importance of considering trade-offs, unintended effects, and information interactions when deciding how to convey weather information. Recipients of the test message that described the effectiveness of evacuation had lower perceptions that the information was overblown, suggesting the potential value of efficacy messaging. In addition, respondents with stronger individualist worldviews rated the information as significantly more overblown and had significantly lower evacuation intentions. This illustrates the importance of understanding how and why responses to weather messages vary across subpopulations. Overall, the analysis demonstrates the potential value of systematically investigating how different people respond to different types of weather risk messages.

Full access
Julie L. Demuth
,
Rebecca E. Morss
,
Isidora Jankov
,
Trevor I. Alcott
,
Curtis R. Alexander
,
Daniel Nietfeld
,
Tara L. Jensen
,
David R. Novak
, and
Stanley G. Benjamin

Abstract

U.S. National Weather Service (NWS) forecasters assess and communicate hazardous weather risks, including the likelihood of a threat and its impacts. Convection-allowing model (CAM) ensembles offer potential to aid forecasting by depicting atmospheric outcomes, including associated uncertainties, at the refined space and time scales at which hazardous weather often occurs. Little is known, however, about what CAM ensemble information is needed to inform forecasting decisions. To address this knowledge gap, participant observations and semistructured interviews were conducted with NWS forecasters from national centers and local weather forecast offices. Data were collected about forecasters’ roles and their forecasting processes, uses of model guidance and verification information, interpretations of prototype CAM ensemble products, and needs for information from CAM ensembles. Results revealed forecasters’ needs for specific types of CAM ensemble guidance, including a product that combines deterministic and probabilistic output from the ensemble as well as a product that provides map-based guidance about timing of hazardous weather threats. Forecasters also expressed a general need for guidance to help them provide impact-based decision support services. Finally, forecasters conveyed needs for objective model verification information to augment their subjective assessments and for training about using CAM ensemble guidance for operational forecasting. The research was conducted as part of an interdisciplinary research effort that integrated elicitation of forecasters’ CAM ensemble needs with model development efforts, with the aim of illustrating a robust approach for creating information for forecasters that is truly useful and usable.

Full access
Rebecca E. Morss
,
Julie L. Demuth
,
Heather Lazrus
,
Leysia Palen
,
C. Michael Barton
,
Christopher A. Davis
,
Chris Snyder
,
Olga V. Wilhelmi
,
Kenneth M. Anderson
,
David A. Ahijevych
,
Jennings Anderson
,
Melissa Bica
,
Kathryn R. Fossell
,
Jennifer Henderson
,
Marina Kogan
,
Kevin Stowe
, and
Joshua Watts

Abstract

During the last few decades, scientific capabilities for understanding and predicting weather and climate risks have advanced rapidly. At the same time, technological advances, such as the Internet, mobile devices, and social media, are transforming how people exchange and interact with information. In this modern information environment, risk communication, interpretation, and decision-making are rapidly evolving processes that intersect across space, time, and society. Instead of a linear or iterative process in which individual members of the public assess and respond to distinct pieces of weather forecast or warning information, this article conceives of weather prediction, communication, and decision-making as an interconnected dynamic system. In this expanded framework, information and uncertainty evolve in conjunction with people’s risk perceptions, vulnerabilities, and decisions as a hazardous weather threat approaches; these processes are intertwined with evolving social interactions in the physical and digital worlds. Along with the framework, the article presents two interdisciplinary research approaches for advancing the understanding of this complex system and the processes within it: analysis of social media streams and computational natural–human system modeling. Examples from ongoing research are used to demonstrate these approaches and illustrate the types of new insights they can reveal. This expanded perspective together with research approaches, such as those introduced, can help researchers and practitioners understand and improve the creation and communication of information in atmospheric science and other fields.

Open access
Fuqing Zhang
,
Rebecca E. Morss
,
J. A. Sippel
,
T. K. Beckman
,
N. C. Clements
,
N. L. Hampshire
,
J. N. Harvey
,
J. M. Hernandez
,
Z. C. Morgan
,
R. M. Mosier
,
S. Wang
, and
S. D. Winkley

Abstract

Hurricane Rita made landfall near the Texas–Louisiana border in September 2005, causing major damage and disruption. As Rita approached the Gulf Coast, uncertainties in the storm’s track and intensity forecasts, combined with the aftermath of Hurricane Katrina, led to major evacuations along the Texas coast and significant traffic jams in the broader Houston area. This study investigates the societal impacts of Hurricane Rita and its forecasts through a face-to-face survey with 120 Texas Gulf Coast residents. The survey explored respondents’ evacuation decisions prior to Hurricane Rita, their perceptions of hurricane risk, and their use of and opinions on Hurricane Rita forecasts. The vast majority of respondents evacuated from Hurricane Rita, and more than half stated that Hurricane Katrina affected their evacuation decision. Although some respondents said that their primary reason for evacuating was local officials’ evacuation order, many reported using information about the hurricane to evaluate the risk it posed to them and their families. Despite the major traffic jams and the minor damage in many evacuated regions, most evacuees interviewed do not regret their decision to evacuate. The majority of respondents stated that they intend to evacuate for a future category 3 hurricane, but the majority would stay for a category 2 hurricane. Most respondents obtained forecasts from multiple sources and reported checking forecasts frequently. Despite the forecast uncertainties, the respondents had high confidence in and satisfaction with the forecasts of Rita provided by the National Hurricane Center.

Full access