Search Results
You are looking at 31 - 37 of 37 items for
- Author or Editor: Richard W. Reynolds x
- Refine by Access: All Content x
Abstract
Studies of climate variability often rely on high quality sea surface temperature (SST) anomalies. Although the high-resolution National Centers for Environmental Prediction (formerly the National Meteorological Center) optimum interpolation (OI) SST analysis is satisfactory for these studies, the OI resolution cannot be maintained before November 1931 due to the lack of satellite data. Longer periods of SSTs have come from traditional analyses of in situ (ship and buoy) SST observations alone.
A new interpolation method is developed using spatial patterns from empirical orthogonal functions (E0Fs)—that is, a principal component analysis—to improve analyses of SST anomalies from 1950 to 1981. The method uses the more accurate OI analyses from 1982 to 1993 to produce the spatial EOFs. The dominant EOF modes (which correspond to the largest variance) are used as basis functions and are fit, in a least squares sense, to the in situ data to determine the time dependence of each mode. A complete field of SST anomalies is then reconstructed from these spatial and temporal modes. The use of EOF basis functions produces an improved in situ SST analysis that more realistically represents sparsely sampled, large-scale structures than traditional analyses.
The EOF reconstruction method is developed for the tropical Pacific for the period 1982–92 and compared to the OI. The method is then expanded to the globe and applied to a much longer period, 1950–92. The results show that the reconstructed fields generally have lower rms differences than the traditional in-situ-only analyses relative to the OI. In addition, the reconstructed fields were found to be smoother than the traditional analyses but with enhanced large-scale signals (e.g., ENSO). Regions where traditional analyses are adequate include some parts of the North Atlantic and the North Pacific, where in situ sampling is most dense. Although the shape of SST anomaly patterns can differ greatly between the reconstruction and traditional in situ analysis, area-averaged results from both analyses show similar anomalies.
Abstract
Studies of climate variability often rely on high quality sea surface temperature (SST) anomalies. Although the high-resolution National Centers for Environmental Prediction (formerly the National Meteorological Center) optimum interpolation (OI) SST analysis is satisfactory for these studies, the OI resolution cannot be maintained before November 1931 due to the lack of satellite data. Longer periods of SSTs have come from traditional analyses of in situ (ship and buoy) SST observations alone.
A new interpolation method is developed using spatial patterns from empirical orthogonal functions (E0Fs)—that is, a principal component analysis—to improve analyses of SST anomalies from 1950 to 1981. The method uses the more accurate OI analyses from 1982 to 1993 to produce the spatial EOFs. The dominant EOF modes (which correspond to the largest variance) are used as basis functions and are fit, in a least squares sense, to the in situ data to determine the time dependence of each mode. A complete field of SST anomalies is then reconstructed from these spatial and temporal modes. The use of EOF basis functions produces an improved in situ SST analysis that more realistically represents sparsely sampled, large-scale structures than traditional analyses.
The EOF reconstruction method is developed for the tropical Pacific for the period 1982–92 and compared to the OI. The method is then expanded to the globe and applied to a much longer period, 1950–92. The results show that the reconstructed fields generally have lower rms differences than the traditional in-situ-only analyses relative to the OI. In addition, the reconstructed fields were found to be smoother than the traditional analyses but with enhanced large-scale signals (e.g., ENSO). Regions where traditional analyses are adequate include some parts of the North Atlantic and the North Pacific, where in situ sampling is most dense. Although the shape of SST anomaly patterns can differ greatly between the reconstruction and traditional in situ analysis, area-averaged results from both analyses show similar anomalies.
Abstract
A weekly 1° spatial resolution optimum interpolation (OI) sea surface temperature (SST) analysis has been produced at the National Oceanic and Atmospheric Administration (NOAA) using both in situ and satellite data from November 1981 to the present. The weekly product has been available since 1993 and is widely used for weather and climate monitoring and forecasting. Errors in the satellite bias correction and the sea ice to SST conversion algorithm are discussed, and then an improved version of the OI analysis is developed. The changes result in a modest reduction in the satellite bias that leaves small global residual biases of roughly −0.03°C. The major improvement in the analysis occurs at high latitudes due to the new sea ice algorithm where local differences between the old and new analysis can exceed 1°C. Comparisons with other SST products are needed to determine the consistency of the OI. These comparisons show that the differences among products occur on large time- and space scales with monthly rms differences exceeding 0.5°C in some regions. These regions are primarily the mid- and high-latitude Southern Oceans and the Arctic where data are sparse, as well as high-gradient areas such as the Gulf Stream and Kuroshio where the gradients cannot be properly resolved on a 1° grid. In addition, globally averaged differences of roughly 0.05°C occur among the products on decadal scales. These differences primarily arise from the same regions where the rms differences are large. However, smaller unexplained differences also occur in other regions of the midlatitude Northern Hemisphere where in situ data should be adequate.
Abstract
A weekly 1° spatial resolution optimum interpolation (OI) sea surface temperature (SST) analysis has been produced at the National Oceanic and Atmospheric Administration (NOAA) using both in situ and satellite data from November 1981 to the present. The weekly product has been available since 1993 and is widely used for weather and climate monitoring and forecasting. Errors in the satellite bias correction and the sea ice to SST conversion algorithm are discussed, and then an improved version of the OI analysis is developed. The changes result in a modest reduction in the satellite bias that leaves small global residual biases of roughly −0.03°C. The major improvement in the analysis occurs at high latitudes due to the new sea ice algorithm where local differences between the old and new analysis can exceed 1°C. Comparisons with other SST products are needed to determine the consistency of the OI. These comparisons show that the differences among products occur on large time- and space scales with monthly rms differences exceeding 0.5°C in some regions. These regions are primarily the mid- and high-latitude Southern Oceans and the Arctic where data are sparse, as well as high-gradient areas such as the Gulf Stream and Kuroshio where the gradients cannot be properly resolved on a 1° grid. In addition, globally averaged differences of roughly 0.05°C occur among the products on decadal scales. These differences primarily arise from the same regions where the rms differences are large. However, smaller unexplained differences also occur in other regions of the midlatitude Northern Hemisphere where in situ data should be adequate.
Abstract
Observations of sea surface and land–near-surface merged temperature anomalies are used to monitor climate variations and to evaluate climate simulations; therefore, it is important to make analyses of these data as accurate as possible. Analysis uncertainty occurs because of data errors and incomplete sampling over the historical period. This manuscript documents recent improvements in NOAA’s merged global surface temperature anomaly analysis, monthly, in spatial 5° grid boxes. These improvements allow better analysis of temperatures throughout the record, with the greatest improvements in the late nineteenth century and since 1985. Improvements in the late nineteenth century are due to improved tuning of the analysis methods. Beginning in 1985, improvements are due to the inclusion of bias-adjusted satellite data. The old analysis (version 2) was documented in 2005, and this improved analysis is called version 3.
Abstract
Observations of sea surface and land–near-surface merged temperature anomalies are used to monitor climate variations and to evaluate climate simulations; therefore, it is important to make analyses of these data as accurate as possible. Analysis uncertainty occurs because of data errors and incomplete sampling over the historical period. This manuscript documents recent improvements in NOAA’s merged global surface temperature anomaly analysis, monthly, in spatial 5° grid boxes. These improvements allow better analysis of temperatures throughout the record, with the greatest improvements in the late nineteenth century and since 1985. Improvements in the late nineteenth century are due to improved tuning of the analysis methods. Beginning in 1985, improvements are due to the inclusion of bias-adjusted satellite data. The old analysis (version 2) was documented in 2005, and this improved analysis is called version 3.
Abstract
Two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI). The analyses have a spatial grid resolution of 0.25° and a temporal resolution of 1 day. One product uses the Advanced Very High Resolution Radiometer (AVHRR) infrared satellite SST data. The other uses AVHRR and Advanced Microwave Scanning Radiometer (AMSR) on the NASA Earth Observing System satellite SST data. Both products also use in situ data from ships and buoys and include a large-scale adjustment of satellite biases with respect to the in situ data. Because of AMSR’s near-all-weather coverage, there is an increase in OI signal variance when AMSR is added to AVHRR. Thus, two products are needed to avoid an analysis variance jump when AMSR became available in June 2002. For both products, the results show improved spatial and temporal resolution compared to previous weekly 1° OI analyses.
The AVHRR-only product uses Pathfinder AVHRR data (currently available from January 1985 to December 2005) and operational AVHRR data for 2006 onward. Pathfinder AVHRR was chosen over operational AVHRR, when available, because Pathfinder agrees better with the in situ data. The AMSR–AVHRR product begins with the start of AMSR data in June 2002. In this product, the primary AVHRR contribution is in regions near land where AMSR is not available. However, in cloud-free regions, use of both infrared and microwave instruments can reduce systematic biases because their error characteristics are independent.
Abstract
Two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI). The analyses have a spatial grid resolution of 0.25° and a temporal resolution of 1 day. One product uses the Advanced Very High Resolution Radiometer (AVHRR) infrared satellite SST data. The other uses AVHRR and Advanced Microwave Scanning Radiometer (AMSR) on the NASA Earth Observing System satellite SST data. Both products also use in situ data from ships and buoys and include a large-scale adjustment of satellite biases with respect to the in situ data. Because of AMSR’s near-all-weather coverage, there is an increase in OI signal variance when AMSR is added to AVHRR. Thus, two products are needed to avoid an analysis variance jump when AMSR became available in June 2002. For both products, the results show improved spatial and temporal resolution compared to previous weekly 1° OI analyses.
The AVHRR-only product uses Pathfinder AVHRR data (currently available from January 1985 to December 2005) and operational AVHRR data for 2006 onward. Pathfinder AVHRR was chosen over operational AVHRR, when available, because Pathfinder agrees better with the in situ data. The AMSR–AVHRR product begins with the start of AMSR data in June 2002. In this product, the primary AVHRR contribution is in regions near land where AMSR is not available. However, in cloud-free regions, use of both infrared and microwave instruments can reduce systematic biases because their error characteristics are independent.
Abstract
Considerable effort is presently being devoted to producing high-resolution sea surface temperature (SST) analyses with a goal of spatial grid resolutions as low as 1 km. Because grid resolution is not the same as feature resolution, a method is needed to objectively determine the resolution capability and accuracy of SST analysis products. Ocean model SST fields are used in this study as simulated “true” SST data and subsampled based on actual infrared and microwave satellite data coverage. The subsampled data are used to simulate sampling errors due to missing data. Two different SST analyses are considered and run using both the full and the subsampled model SST fields, with and without additional noise. The results are compared as a function of spatial scales of variability using wavenumber auto- and cross-spectral analysis.
The spectral variance at high wavenumbers (smallest wavelengths) is shown to be attenuated relative to the true SST because of smoothing that is inherent to both analysis procedures. Comparisons of the two analyses (both having grid sizes of roughly
Abstract
Considerable effort is presently being devoted to producing high-resolution sea surface temperature (SST) analyses with a goal of spatial grid resolutions as low as 1 km. Because grid resolution is not the same as feature resolution, a method is needed to objectively determine the resolution capability and accuracy of SST analysis products. Ocean model SST fields are used in this study as simulated “true” SST data and subsampled based on actual infrared and microwave satellite data coverage. The subsampled data are used to simulate sampling errors due to missing data. Two different SST analyses are considered and run using both the full and the subsampled model SST fields, with and without additional noise. The results are compared as a function of spatial scales of variability using wavenumber auto- and cross-spectral analysis.
The spectral variance at high wavenumbers (smallest wavelengths) is shown to be attenuated relative to the true SST because of smoothing that is inherent to both analysis procedures. Comparisons of the two analyses (both having grid sizes of roughly
This paper describes the new release of the Merged Land–Ocean Surface Temperature analysis (MLOST version 3.5), which is used in operational monitoring and climate assessment activities by the NOAA National Climatic Data Center. The primary motivation for the latest version is the inclusion of a new land dataset that has several major improvements, including a more elaborate approach for addressing changes in station location, instrumentation, and siting conditions. The new version is broadly consistent with previous global analyses, exhibiting a trend of 0.076°C decade−1 since 1901, 0.162°C decade−1 since 1979, and widespread warming in both time periods. In general, the new release exhibits only modest differences with its predecessor, the most obvious being very slightly more warming at the global scale (0.004°C decade−1 since 1901) and slightly different trend patterns over the terrestrial surface.
This paper describes the new release of the Merged Land–Ocean Surface Temperature analysis (MLOST version 3.5), which is used in operational monitoring and climate assessment activities by the NOAA National Climatic Data Center. The primary motivation for the latest version is the inclusion of a new land dataset that has several major improvements, including a more elaborate approach for addressing changes in station location, instrumentation, and siting conditions. The new version is broadly consistent with previous global analyses, exhibiting a trend of 0.076°C decade−1 since 1901, 0.162°C decade−1 since 1979, and widespread warming in both time periods. In general, the new release exhibits only modest differences with its predecessor, the most obvious being very slightly more warming at the global scale (0.004°C decade−1 since 1901) and slightly different trend patterns over the terrestrial surface.
The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global ocean's latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice model has three layers. The CFSR atmospheric model has observed variations in carbon dioxide (CO2) over the 1979–2009 period, together with changes in aerosols and other trace gases and solar variations. Most available in situ and satellite observations were included in the CFSR. Satellite observations were used in radiance form, rather than retrieved values, and were bias corrected with “spin up” runs at full resolution, taking into account variable CO2 concentrations. This procedure enabled the smooth transitions of the climate record resulting from evolutionary changes in the satellite observing system.
CFSR atmospheric, oceanic, and land surface output products are available at an hourly time resolution and a horizontal resolution of 0.5° latitude × 0.5° longitude. The CFSR data will be distributed by the National Climatic Data Center (NCDC) and NCAR. This reanalysis will serve many purposes, including providing the basis for most of the NCEP Climate Prediction Center's operational climate products by defining the mean states of the atmosphere, ocean, land surface, and sea ice over the next 30-yr climate normal (1981–2010); providing initial conditions for historical forecasts that are required to calibrate operational NCEP climate forecasts (from week 2 to 9 months); and providing estimates and diagnoses of the Earth's climate state over the satellite data period for community climate research.
Preliminary analysis of the CFSR output indicates a product that is far superior in most respects to the reanalysis of the mid-1990s. The previous NCEP–NCAR reanalyses have been among the most used NCEP products in history; there is every reason to believe the CFSR will supersede these older products both in scope and quality, because it is higher in time and space resolution, covers the atmosphere, ocean, sea ice, and land, and was executed in a coupled mode with a more modern data assimilation system and forecast model.
The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global ocean's latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice model has three layers. The CFSR atmospheric model has observed variations in carbon dioxide (CO2) over the 1979–2009 period, together with changes in aerosols and other trace gases and solar variations. Most available in situ and satellite observations were included in the CFSR. Satellite observations were used in radiance form, rather than retrieved values, and were bias corrected with “spin up” runs at full resolution, taking into account variable CO2 concentrations. This procedure enabled the smooth transitions of the climate record resulting from evolutionary changes in the satellite observing system.
CFSR atmospheric, oceanic, and land surface output products are available at an hourly time resolution and a horizontal resolution of 0.5° latitude × 0.5° longitude. The CFSR data will be distributed by the National Climatic Data Center (NCDC) and NCAR. This reanalysis will serve many purposes, including providing the basis for most of the NCEP Climate Prediction Center's operational climate products by defining the mean states of the atmosphere, ocean, land surface, and sea ice over the next 30-yr climate normal (1981–2010); providing initial conditions for historical forecasts that are required to calibrate operational NCEP climate forecasts (from week 2 to 9 months); and providing estimates and diagnoses of the Earth's climate state over the satellite data period for community climate research.
Preliminary analysis of the CFSR output indicates a product that is far superior in most respects to the reanalysis of the mid-1990s. The previous NCEP–NCAR reanalyses have been among the most used NCEP products in history; there is every reason to believe the CFSR will supersede these older products both in scope and quality, because it is higher in time and space resolution, covers the atmosphere, ocean, sea ice, and land, and was executed in a coupled mode with a more modern data assimilation system and forecast model.