Search Results

You are looking at 31 - 40 of 41 items for

  • Author or Editor: Terry L. Clark x
  • Refine by Access: All Content x
Clear All Modify Search
Roelof T. Bruintjes
,
Terry L. Clark
, and
William D. Hall

Abstract

A case study showing comparisons between observations and numerical simulations of the passage of a winter storm over complex terrain is presented. The interactions between the mesoscale and cloud environments and the microphysical and dynamical processes are addressed using both observations and numerical simulations.

A three-dimensional, time-dependent nested grid model was used to conduct numerical simulations of the three-dimensional airflow and cloud evolution over the Mogollon Rim and adjacent terrain in Arizona. The modeling results indicated that the flow patterns and cloud liquid water (CLW) were closely linked to the topography. To a large extent, gravity waves excited by the flow over the mountains determine the distribution of clouds and precipitation. The waves extend through deep layers of the atmosphere with substantial updrafts and downdrafts, at times exceeding 5 m s−1. The simulated vertical velocities and horizontal wavelengths of about 20 km were in good agreement with the aircraft observations. The CLW regions associated with the waves extended through much deeper layers of the atmosphere and in quantities a factor of 2 larger than those associated with the forced ascent over the ridges. The CLW associated with waves may provide an additional source for precipitation development not previously considered in cloud seeding experiments. In addition, synoptic-scale flow patterns over the area change from one storm system to the next and even during one storm system. Consequently, both the winds and the evolution of clouds over the area are highly space and time dependent

Full access
Terry L. Clark
,
William D. Hall
, and
Robert M. Banta

Abstract

Simulations of the 9 January 1989 Colorado Front Range windstorm using both realistic three-dimensional (3D) orography and a representative two-dimensional (2D) east–west cross-sectional orography are presented. Both Coriolis forcing and surface friction (drag law formulation) were included for all experiments. The model results were compared with analyses of Doppler lidar scan data available from the surface to 4 km MSL provided by the Environmental Technology Laboratory of the National Oceanic and Atmospheric Administration (NOAA).

The fully three-dimensional simulations with realistic orography used time-dependent inflow boundary conditions. These experiments were designed, in part, to assess the ability of mesoscale models to predict the onset and general characteristics of downslope windstorms. The present experiments highlight the sensitivity of wind storm onset and positioning of surface gusts to both model resolution and surface physics, which is in agreement with previous findings.

These realistic orography experiments show that the major east–west canyons in the vicinity of Boulder produce a north–south broken structure to the strong updraft jump patterns. However, as the model resolution is increased from 3.33 to 1.11 km, the modulating effects of the canyons, with the exception of the Big Thompson, actually decreased. This tendency is attributed to an increasingly dominant role of the nonlinear internal fluid dynamics as the model resolution increases. Comparisons of model simulations with the lidar observations showed good agreement on the spatial and temporal scales of lee eddies. A north–south scale of ∼10 km occurred in both the realistic orography model results and observations.

A relatively strong Coriolis effect was shown to result from the super- and subgeostrophic flows caused by the nonlinear gravity wave dynamics. A northerly wind component of as much as 12 m s−1 at low levels over the foothills and plains is shown to be a direct result of Coriolis forcing. The turning of the wind with height as a result of this effect is supported by the observations.

The transition from two to three dimensions showed some dramatic changes to the structure of the windstorm gusts in the idealized 2D orography simulations. The 3D simulations showed a smooth distribution of energy centered about a scale of ∼3 km. These gust structures were close to isotropic in the horizontal as they propagated out onto the plains. Again this type of structure was supported by the observations.

Three sources of surface gustiness are discussed in the paper. Surface gusts produced by vortex tilting and advected out of the wave-breaking region, as described in previous studies, occur in the present simulations. This mechanism is evidenced by the accompanying strong vertical vorticity. Propagating gust structures, similar in appearance to those obtained by others, are also obtained in both the 2D and 3D experiments using the idealized 2D orography. Rather than resulting from local Kelvin–Helmholtz instabilities, the propagating gusts in the present experiments appear to arise from high-amplitude lee waves that propagate as a result of the transient character of the wave-breaking region modulating the shape of the effective waveguide.

Full access
Terry L. Clark
,
James R. Scoggins
, and
Robert E. Cox

Abstract

The formulation of algebraic functions, involving synoptic-scale atmospheric parameters as variables, capable of predicting clear-air turbulence within 7000 ft sub-layers of the stratosphere was attempted. The data sample used was composed of 153 turbulent and non-turbulent regions identified from 46 stratospheric flights of the XB-70 aircraft over the western United States during the period March 1965 to November 1967, and the values of 69 synoptic-scale parameters determined from rawinsonde data associated with each of the regions. After the XB-10 regions and the values of the synoptic-scale parameters were grouped into one or more of five overlapping categories, or sub-layers, determined by the altitude of the aircraft at the time the turbulence or non-turbulence was reported, discriminant function analysis was employed in each sub-layer to construct functions which could discriminate the turbulent from the non-turbulent regions. Those discriminant functions yielding the best results in each sub-layer were tested from 23 stratospheric flights of the YF-12A aircraft over the same area during the period March 1970 to January 1972. For each sub-layer, five discriminant functions yielding the best results were used to derive a forecasting procedure. This procedure correctly identified approximately 85% of the turbulent and non-turbulent regions in each of the five sub-layers.

Full access
Todd P. Lane
,
Robert D. Sharman
,
Terry L. Clark
, and
Hsiao-Ming Hsu

Abstract

An investigation of the generation of turbulence above deep convection is presented. This investigation is motivated by an encounter between a commercial passenger aircraft and severe turbulence above a developing thunderstorm near Dickinson, North Dakota, on 10 July 1997. Very high-resolution two- and three-dimensional numerical simulations are used to investigate the possible causes of the turbulence encounter. These simulations explicitly resolve the convection and the turbulence-causing instabilities. The configurations of the models are consistent with the meteorological conditions surrounding the event.

The turbulence generated in the numerical simulations can be placed into two general categories. The first category includes turbulence that remains local to the cloud top, and the second category includes turbulence that propagates away from the convection and owes its existence to the breakdown of convectively generated gravity waves. In both the two- and three-dimensional calculations, the local turbulence develops rapidly and occupies a layer about 1 km deep above the top of convective updrafts after their initial overshoot into the stratosphere. This local turbulence is generated by the highly nonlinear interactions between the overshooting convective updrafts and the tropopause. Gravity wave breakdown is only present in the two-dimensional calculation and occurs in a layer about 3 km deep and 30 km long. This gravity wave breakdown is attributed to an interaction between the gravity waves and a critical level induced by the background wind shear and cloud-induced wind perturbations above cloud top.

Full access
Terry L. Clark
,
Teddie Keller
,
Janice Coen
,
Peter Neilley
,
Hsiao-ming Hsu
, and
William D. Hall

Abstract

Numerical simulations of terrain-induced turbulence associated with airflow over Lantau Island of Hong Kong are presented. Lantau is a relatively small island with three narrow peaks rising to between 700 and 950 m above mean sea level. This research was undertaken as part of a project to better understand and predict the nature of turbulence and shear at the new airport site on the island of Chek Lap Kok, which is located to the lee of Lantau. Intensive ground and aerial observations were taken from May through June 1994, during the Lantau Experiment (LANTEX). This paper focuses on flow associated with the passage of Tropical Storm Russ on 7 June 1994, during which severe turbulence was observed.

The nature of the environmental and topographic forcing on 7 June 1994 resulted in the turbulence and shear being dominated by the combination of topographic effects and surface friction. High-resolution numerical simulations, initialized using local sounding data, were performed using the Clark model. The simulation results indicate that gravity-wave dynamics played a very minor role in the flow distortion and generation of turbulence. As a result of this flow regime, relatively high vertical and horizontal resolution was required to simulate the mechanically generated turbulence associated with Tropical Storm Russ.

Results are presented using a vertical resolution of 10 m near the surface and with horizontal resolutions of both 125 and 62.5 m over local, nested domains of about 13–24 km on a side. The 125-m model resolution simulated highly distorted flow in the lee of Lantau, with streaks emanating downstream from regions of sharp orographic gradients. At this resolution the streaks were nearly steady in time. At the higher horizontal resolution of 62.5 m the streaks became unstable, resulting in eddies advecting downstream within a distorted streaky mean flow similar to the 125-m resolution simulation. The temporally averaged fields changed little with the increase in resolution; however, there was a three- to fourfold increase in the temporal variability of the flow, as indicated by the standard deviation of the wind from a 10-min temporal average. Overall, the higher resolution simulations compared quite well with the observations, whereas the lower resolution cases did not. The high-resolution experiments also showed a much broader horizontal and vertical extent for the transient eddies. The depth of orographic influence increased from about 200 m to over 600 m with the increase in resolution. A physical explanation, using simple linear arguments based on the blocking effects of the eddies, is presented. The nature of the flow separation is analyzed using Bernoulli’s energy form to display the geometry of the separation bubbles. The height of the 80 m2 s−2 energy surface shows eddies forming in regions of large orographic gradients and advecting downstream.

Tests using both buoyancy excitation and stochastic backscatter to parameterize the underresolved dynamics at the 125-m resolution are presented, as well as one experiment testing the influence of static stability suppressing turbulence development. All these tests showed no significant effect. Implications of these results to the parameterization of mechanically induced turbulence in complex terrain are discussed.

Full access
Robert E. Eskridge
,
Francis S. Binkowski
,
J. C. R. Hunt
,
Terry L. Clark
, and
Kenneth L. Demerjian

Abstract

A finite-difference highway model is presented which uses surface layer similarity theory and a vehicle wake theory to determine the atmospheric structure along a roadway. Surface similarity is used to determine the wind profile and eddy diffusion profiles in the ambient atmosphere. The ambient atmosphere is treated as a basic-state atmosphere on which the disturbances due to vehicle wakes are added. A conservation of species equation is then solved using an upstream-flux corrected technique which insures positive concentrations. Simulation results from the highway model are compared with 58 half-hour periods of data (meteorological and SF6 tracer) taken by General Motors. The results show that the predictions of this model are closer to the observations than those of the Gaussian-formulated EPA highway model (HIWAY).

Full access
Terry L. Clark
,
William D. Hall
,
Robert M. Kerr
,
Don Middleton
,
Larry Radke
,
F. Martin Ralph
,
Paul J. Neiman
, and
David Levinson

Abstract

Results from numerical simulations of the Colorado Front Range downslope windstorm of 9 December 1992 are presented. Although this case was not characterized by severe surface winds, the event caused extreme clear-air turbulence (CAT) aloft, as indicated by the severe structural damage experienced by a DC-8 cargo jet at 9.7 km above mean sea level over the mountains. Detailed measurements from the National Oceanic and Atmospheric Administration/Environmental Research Laboratories/Environmental Technology Laboratory Doppler lidar and wind profilers operating on that day and from the Defense Meteorological Satellite Program satellite allow for a uniquely rich comparison between the simulations and observations.

Four levels of grid refinement were used in the model. The outer domain used National Centers for Environmental Prediction data for initial and boundary conditions. The finest grid used 200 m in all three dimensions over a 48 km by 48 km section. The range of resolution and domain coverage were sufficient to resolve the abundant variety of dynamics associated with a time-evolving windstorm forced during a frontal passage. This full range of resolution and model complexity was essential in this case. Many aspects of this windstorm are inherently three-dimensional and are not represented in idealized models using either 2D or so-called 2D–3D dynamics.

Both the timing and location of wave breaking compared well with observations. The model also reproduced cross-stream wavelike perturbations in the jet stream that compared well with the orientation and spacing of cloud bands observed by satellite and lidar. Model results also show that the observed CAT derives from interactions between these wavelike jet stream disturbances and mountain-forced internal gravity waves. Due to the nearly east–west orientation of the jet stream, these two interacting wave modes were orthogonal to each other. Thermal gradients associated with the intense jet stream undulations generated horizontal vortex tubes (HVTs) aligned with the mean flow. These HVTs remained aloft while they propagated downstream at about the elevation of the aircraft incident, and evidence for such a vortex was seen by the lidar. The model and observations suggest that one of these intense vortices may have caused the aircraft incident.

Reports of strong surface gusts were intermittent along the Front Range during the period of this study. The model showed that interactions between the gravity waves and flow-aligned jet stream undulations result in isolated occurrences of strong surface gusts in line with observations. The simulations show that strong shears on the upper and bottom surfaces of the jet stream combine to provide an episodic “downburst of turbulence.” In the present case, the perturbations of the jet stream provide a funnel-shaped shear zone aligned with the mean flow that acts as a guide for the downward transport of turbulence resulting from breaking gravity waves. The physical picture for the upper levels is similar to the surface gusts described by Clark and Farley resulting from vortex tilting. The CAT feeding into this funnel came from all surfaces of the jet stream with more than half originating from the vertically inclined shear zones on the bottom side of the jet stream. Visually the downburst of turbulence looks similar to a rain shaft plummeting to the surface and propagating out over the plains leaving relatively quiescent conditions behind.

Full access
Jonathan J. Gourley
,
Yang Hong
,
Zachary L. Flamig
,
Ami Arthur
,
Robert Clark
,
Martin Calianno
,
Isabelle Ruin
,
Terry Ortel
,
Michael E. Wieczorek
,
Pierre-Emmanuel Kirstetter
,
Edward Clark
, and
Witold F. Krajewski

Despite flash flooding being one of the most deadly and costly weather-related natural hazards worldwide, individual datasets to characterize them in the United States are hampered by limited documentation and can be difficult to access. This study is the first of its kind to assemble, reprocess, describe, and disseminate a georeferenced U.S. database providing a long-term, detailed characterization of flash flooding in terms of spatiotemporal behavior and specificity of impacts. The database is composed of three primary sources: 1) the entire archive of automated discharge observations from the U.S. Geological Survey that has been reprocessed to describe individual flooding events, 2) flash-flooding reports collected by the National Weather Service from 2006 to the present, and 3) witness reports obtained directly from the public in the Severe Hazards Analysis and Verification Experiment during the summers 2008–10. Each observational data source has limitations; a major asset of the unified flash flood database is its collation of relevant information from a variety of sources that is now readily available to the community in common formats. It is anticipated that this database will be used for many diverse purposes, such as evaluating tools to predict flash flooding, characterizing seasonal and regional trends, and improving understanding of dominant flood-producing processes. We envision the initiation of this community database effort will attract and encompass future datasets.

Full access
Brian A. Klimowski
,
Robert Becker
,
Eric A. Betterton
,
Roelof Bruintjes
,
Terry L. Clark
,
William D. Hall
,
Brad W. Orr
,
Robert A. Kropfli
,
Paivi Piironen
,
Roger F. Reinking
,
Dennis Sundie
, and
Taneil Uttal

The 1995 Arizona Program was a field experiment aimed at advancing the understanding of winter storm development in a mountainous region of central Arizona. From 15 January through 15 March 1995, a wide variety of instrumentation was operated in and around the Verde Valley southwest of Flagstaff, Arizona. These instruments included two Doppler dual-polarization radars, an instrumented airplane, a lidar, microwave and infrared radiometers, an acoustic sounder, and other surface-based facilities. Twenty-nine scientists from eight institutions took part in the program. Of special interest was the interaction of topographically induced, storm-embedded gravity waves with ambient upslope flow. It is hypothesized that these waves serve to augment the upslope-forced precipitation that falls on the mountain ridges. A major thrust of the program was to compare the observations of these winter storms to those predicted with the Clark-NCAR 3D, nonhydrostatic numerical model.

Full access
Morris L. Weisman
,
Robert J. Trapp
,
Glen S. Romine
,
Chris Davis
,
Ryan Torn
,
Michael Baldwin
,
Lance Bosart
,
John Brown
,
Michael Coniglio
,
David Dowell
,
A. Clark Evans
,
Thomas J. Galarneau Jr.
,
Julie Haggerty
,
Terry Hock
,
Kevin Manning
,
Paul Roebber
,
Pavel Romashkin
,
Russ Schumacher
,
Craig S. Schwartz
,
Ryan Sobash
,
David Stensrud
, and
Stanley B. Trier

Abstract

The Mesoscale Predictability Experiment (MPEX) was conducted from 15 May to 15 June 2013 in the central United States. MPEX was motivated by the basic question of whether experimental, subsynoptic observations can extend convective-scale predictability and otherwise enhance skill in short-term regional numerical weather prediction.

Observational tools for MPEX included the National Science Foundation (NSF)–National Center for Atmospheric Research (NCAR) Gulfstream V aircraft (GV), which featured the Airborne Vertical Atmospheric Profiling System mini-dropsonde system and a microwave temperature-profiling (MTP) system as well as several ground-based mobile upsonde systems. Basic operations involved two missions per day: an early morning mission with the GV, well upstream of anticipated convective storms, and an afternoon and early evening mission with the mobile sounding units to sample the initiation and upscale feedbacks of the convection.

A total of 18 intensive observing periods (IOPs) were completed during the field phase, representing a wide spectrum of synoptic regimes and convective events, including several major severe weather and/or tornado outbreak days. The novel observational strategy employed during MPEX is documented herein, as is the unique role of the ensemble modeling efforts—which included an ensemble sensitivity analysis—to both guide the observational strategies and help address the potential impacts of such enhanced observations on short-term convective forecasting. Preliminary results of retrospective data assimilation experiments are discussed, as are data analyses showing upscale convective feedbacks.

Full access