Search Results

You are looking at 31 - 34 of 34 items for

  • Author or Editor: Vanda Grubišić x
  • Refine by Access: All Content x
Clear All Modify Search

THE TERRAIN-INDUCED ROTOR EXPERIMENT

A Field Campaign Overview Including Observational Highlights

Vanda Grubišić
,
James D. Doyle
,
Joachim Kuettner
,
Stephen Mobbs
,
Ronald B. Smith
,
C. David Whiteman
,
Richard Dirks
,
Stanley Czyzyk
,
Stephen A. Cohn
,
Simon Vosper
,
Martin Weissmann
,
Samuel Haimov
,
Stephan F. J. De Wekker
,
Laura L. Pan
, and
Fotini Katopodes Chow

The Terrain-Induced Rotor Experiment (T-REX) is a coordinated international project, composed of an observational field campaign and a research program, focused on the investigation of atmospheric rotors and closely related phenomena in complex terrain. The T-REX field campaign took place during March and April 2006 in the lee of the southern Sierra Nevada in eastern California. Atmospheric rotors have been traditionally defined as quasi-two-dimensional atmospheric vortices that form parallel to and downwind of a mountain ridge under conditions conducive to the generation of large-amplitude mountain waves. Intermittency, high levels of turbulence, and complex small-scale internal structure characterize rotors, which are known hazards to general aviation. The objective of the T-REX field campaign was to provide an unprecedented comprehensive set of in situ and remotely sensed meteorological observations from the ground to UTLS altitudes for the documentation of the spatiotemporal characteristics and internal structure of a tightly coupled system consisting of an atmospheric rotor, terrain-induced internal gravity waves, and a complex terrain boundary layer. In addition, T-REX had several ancillary objectives including the studies of UTLS chemical distribution in the presence of mountain waves and complex-terrain boundary layer in the absence of waves and rotors. This overview provides a background of the project including the information on its science objectives, experimental design, and observational systems, along with highlights of key observations obtained during the field campaign.

Full access
Juerg Schmidli
,
Brian Billings
,
Fotini K. Chow
,
Stephan F. J. de Wekker
,
James Doyle
,
Vanda Grubišić
,
Teddy Holt
,
Qiangfang Jiang
,
Katherine A. Lundquist
,
Peter Sheridan
,
Simon Vosper
,
C. David Whiteman
,
Andrzej A. Wyszogrodzki
, and
Günther Zängl

Abstract

Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valley–plain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-valley wind. The models use the same initial and lateral boundary conditions, and standard parameterizations for turbulence, radiation, and land surface processes. The evolution of the mean along-valley wind (averaged over the valley cross section) is similar for all models, except for a time shift between individual models of up to 2 h and slight differences in the speed of the evolution. The analysis suggests that these differences are primarily due to differences in the simulated surface energy balance such as the dependence of the sensible heat flux on surface wind speed. Additional sensitivity experiments indicate that the evolution of the mean along-valley flow is largely independent of the choice of the dynamical core and of the turbulence parameterization scheme. The latter does, however, have a significant influence on the vertical structure of the boundary layer and of the along-valley wind. Thus, this ideal case may be useful for testing and evaluation of mesoscale numerical models with respect to land surface–atmosphere interactions and turbulence parameterizations.

Full access
James D. Doyle
,
Saša Gaberšek
,
Qingfang Jiang
,
Ligia Bernardet
,
John M. Brown
,
Andreas Dörnbrack
,
Elmar Filaus
,
Vanda Grubišić
,
Daniel J. Kirshbaum
,
Oswald Knoth
,
Steven Koch
,
Juerg Schmidli
,
Ivana Stiperski
,
Simon Vosper
, and
Shiyuan Zhong

Abstract

Numerical simulations of flow over steep terrain using 11 different nonhydrostatic numerical models are compared and analyzed. A basic benchmark and five other test cases are simulated in a two-dimensional framework using the same initial state, which is based on conditions during Intensive Observation Period (IOP) 6 of the Terrain-Induced Rotor Experiment (T-REX), in which intense mountain-wave activity was observed. All of the models use an identical horizontal resolution of 1 km and the same vertical resolution. The six simulated test cases use various terrain heights: a 100-m bell-shaped hill, a 1000-m idealized ridge that is steeper on the lee slope, a 2500-m ridge with the same terrain shape, and a cross-Sierra terrain profile. The models are tested with both free-slip and no-slip lower boundary conditions.

The results indicate a surprisingly diverse spectrum of simulated mountain-wave characteristics including lee waves, hydraulic-like jump features, and gravity wave breaking. The vertical velocity standard deviation is twice as large in the free-slip experiments relative to the no-slip simulations. Nevertheless, the no-slip simulations also exhibit considerable variations in the wave characteristics. The results imply relatively low predictability of key characteristics of topographically forced flows such as the strength of downslope winds and stratospheric wave breaking. The vertical flux of horizontal momentum, which is a domain-integrated quantity, exhibits considerable spread among the models, particularly for the experiments with the 2500-m ridge and Sierra terrain. The differences among the various model simulations, all initialized with identical initial states, suggest that model dynamical cores may be an important component of diversity for the design of mesoscale ensemble systems for topographically forced flows. The intermodel differences are significantly larger than sensitivity experiments within a single modeling system.

Full access
Mathias W. Rotach
,
Stefano Serafin
,
Helen C. Ward
,
Marco Arpagaus
,
Ioana Colfescu
,
Joan Cuxart
,
Stephan F. J. De Wekker
,
Vanda Grubišic
,
Norbert Kalthoff
,
Thomas Karl
,
Daniel J. Kirshbaum
,
Manuela Lehner
,
Stephen Mobbs
,
Alexandre Paci
,
Elisa Palazzi
,
Adriana Bailey
,
Jürg Schmidli
,
Christoph Wittmann
,
Georg Wohlfahrt
, and
Dino Zardi

Abstract

In this essay, we highlight some challenges the atmospheric community is facing concerning adequate treatment of flows over mountains and their implications for numerical weather prediction (NWP), climate simulations, and impact modeling. With recent increases in computing power (and hence model resolution) numerical models start to face new limitations (such as numerical instability over steep terrain). At the same time there is a growing need for sufficiently reliable NWP model output to drive various impact models (for hydrology, air pollution, agriculture, etc.). The input information for these impact models is largely produced by the boundary layer (BL) parameterizations of NWP models. All known BL parameterizations assume flat and horizontally homogeneous surface conditions, and their performance and interaction with resolved flows is massively understudied over mountains—hence their output may be accidentally acceptable at best. We therefore advocate the systematic investigation of the so-called “mountain boundary layer” (MoBL), introduced to emphasize its many differences to the BL over flat and horizontally homogeneous terrain.

An international consortium of scientists has launched a research program, TEAMx (Multi-Scale Transport and Exchange Processes in the Atmosphere over Mountains–Program and Experiment), to address some of the most pressing scientific challenges. TEAMx is endorsed by World Weather Research Programme (WWRP) and the Global Energy and Water Exchanges (GEWEX) project as a “cross-cutting project.” A program coordination office was established at the University of Innsbruck (Austria). This essay introduces the background to and content of a recently published white paper outlining the key research questions of TEAMx.

Full access