Search Results

You are looking at 31 - 33 of 33 items for

  • Author or Editor: Wayne Higgins x
  • Refine by Access: All Content x
Clear All Modify Search
Siegfried Schubert, David Gutzler, Hailan Wang, Aiguo Dai, Tom Delworth, Clara Deser, Kirsten Findell, Rong Fu, Wayne Higgins, Martin Hoerling, Ben Kirtman, Randal Koster, Arun Kumar, David Legler, Dennis Lettenmaier, Bradfield Lyon, Victor Magana, Kingtse Mo, Sumant Nigam, Philip Pegion, Adam Phillips, Roger Pulwarty, David Rind, Alfredo Ruiz-Barradas, Jae Schemm, Richard Seager, Ronald Stewart, Max Suarez, Jozef Syktus, Mingfang Ting, Chunzai Wang, Scott Weaver, and Ning Zeng

Abstract

The U.S. Climate Variability and Predictability (CLIVAR) working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land–atmosphere feedbacks on regional drought. The runs were carried out with five different atmospheric general circulation models (AGCMs) and one coupled atmosphere–ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Niño–Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic multidecadal oscillation (AMO), and a global trend pattern.

One of the key findings is that all of the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the United States tends to occur when the two oceans have anomalies of opposite signs. Further highlights of the response over the United States to the Pacific forcing include precipitation signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. The response to the positive SST trend forcing pattern is an overall surface warming over the world’s land areas, with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all of the models.

It is hoped that these early results, as well as those reported in the other contributions to this special issue on drought, will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.

Full access
Wayne Higgins, Dave Ahijevych, Jorge Amador, Ana Barros, E. Hugo Berbery, Ernesto Caetano, Richard Carbone, Paul Ciesielski, Rob Cifelli, Miguel Cortez-Vazquez, Art Douglas, Michael Douglas, Gus Emmanuel, Chris Fairall, David Gochis, David Gutzler, Thomas Jackson, Richard Johnson, Clark King, Timothy Lang, Myong-In Lee, Dennis Lettenmaier, Rene Lobato, Victor Magaña, Jose Meiten, Kingtse Mo, Stephen Nesbitt, Francisco Ocampo-Torres, Erik Pytlak, Peter Rogers, Steven Rutledge, Jae Schemm, Siegfried Schubert, Allen White, Christopher Williams, Andrew Wood, Robert Zamora, and Chidong Zhang

The North American Monsoon Experiment (NAME) is an internationally coordinated process study aimed at determining the sources and limits of predictability of warm-season precipitation over North America. The scientific objectives of NAME are to promote a better understanding and more realistic simulation of warm-season convective processes in complex terrain, intraseasonal variability of the monsoon, and the response of the warm-season atmospheric circulation and precipitation patterns to slowly varying, potentially predictable surface boundary conditions.

During the summer of 2004, the NAME community implemented an international (United States, Mexico, Central America), multiagency (NOAA, NASA, NSF, USDA) field experiment called NAME 2004. This article presents early results from the NAME 2004 campaign and describes how the NAME modeling community will leverage the NAME 2004 data to accelerate improvements in warm-season precipitation forecasts for North America.

Full access
Suranjana Saha, Shrinivas Moorthi, Hua-Lu Pan, Xingren Wu, Jiande Wang, Sudhir Nadiga, Patrick Tripp, Robert Kistler, John Woollen, David Behringer, Haixia Liu, Diane Stokes, Robert Grumbine, George Gayno, Jun Wang, Yu-Tai Hou, Hui-ya Chuang, Hann-Ming H. Juang, Joe Sela, Mark Iredell, Russ Treadon, Daryl Kleist, Paul Van Delst, Dennis Keyser, John Derber, Michael Ek, Jesse Meng, Helin Wei, Rongqian Yang, Stephen Lord, Huug van den Dool, Arun Kumar, Wanqiu Wang, Craig Long, Muthuvel Chelliah, Yan Xue, Boyin Huang, Jae-Kyung Schemm, Wesley Ebisuzaki, Roger Lin, Pingping Xie, Mingyue Chen, Shuntai Zhou, Wayne Higgins, Cheng-Zhi Zou, Quanhua Liu, Yong Chen, Yong Han, Lidia Cucurull, Richard W. Reynolds, Glenn Rutledge, and Mitch Goldberg

The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global ocean's latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice model has three layers. The CFSR atmospheric model has observed variations in carbon dioxide (CO2) over the 1979–2009 period, together with changes in aerosols and other trace gases and solar variations. Most available in situ and satellite observations were included in the CFSR. Satellite observations were used in radiance form, rather than retrieved values, and were bias corrected with “spin up” runs at full resolution, taking into account variable CO2 concentrations. This procedure enabled the smooth transitions of the climate record resulting from evolutionary changes in the satellite observing system.

CFSR atmospheric, oceanic, and land surface output products are available at an hourly time resolution and a horizontal resolution of 0.5° latitude × 0.5° longitude. The CFSR data will be distributed by the National Climatic Data Center (NCDC) and NCAR. This reanalysis will serve many purposes, including providing the basis for most of the NCEP Climate Prediction Center's operational climate products by defining the mean states of the atmosphere, ocean, land surface, and sea ice over the next 30-yr climate normal (1981–2010); providing initial conditions for historical forecasts that are required to calibrate operational NCEP climate forecasts (from week 2 to 9 months); and providing estimates and diagnoses of the Earth's climate state over the satellite data period for community climate research.

Preliminary analysis of the CFSR output indicates a product that is far superior in most respects to the reanalysis of the mid-1990s. The previous NCEP–NCAR reanalyses have been among the most used NCEP products in history; there is every reason to believe the CFSR will supersede these older products both in scope and quality, because it is higher in time and space resolution, covers the atmosphere, ocean, sea ice, and land, and was executed in a coupled mode with a more modern data assimilation system and forecast model.

Full access