Search Results

You are looking at 31 - 40 of 116 items for

  • Author or Editor: Wei Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Xin-Zhong Liang, Arthur N. Samel, and Wei-Chyung Wang

Abstract

China's rainfall interannual predictability is generally believed to depend upon the accurate representation of its annual cycle as well as teleconnections with planetary surface anomalies, including tropical east Pacific sea surface temperature and Eurasian snow and soil moisture. A suite of general circulation model (GCM) simulations is used to ascertain the existence of these relationships. First, a comparison of thirty 1980–88 Atmospheric Model Intercomparison Project (AMIP) GCM simulations shows no clear correspondence between model skill to reproduce observed rainfall annual cycle and interannual variability. Thus, accurate representation of either component does not ensure the realistic simulation of the other. Second, diagnosis of the 1903–94 and 1950–97 National Center for Atmospheric Research (NCAR) Community Climate Model, version 3 (CCM3), ensemble integrations indicates the existence of teleconnections in which spring planetary surface anomalies lead China's summer rainfall variations. These teleconnections, however, are sensitive to initial conditions, which define distinct dynamic regimes during the integration period. In addition, analysis of the NCAR Climate System Model (CSM) 300-yr equilibrium simulation reveals that the teleconnections display decadal variations. These results cast doubt on the traditional physical mechanisms that explain China's rainfall teleconnections and, hence, emphasize the need to incorporate interactions between planetary surface anomalies and specific dynamic regimes.

Full access
Xin-Zhong Liang, Wei-Chyung Wang, and Michael P. Dudek

Abstract

Observed and general circulation climate model (GCM) simulated interannual teleconnection patterns in the Northern Hemisphere are compared on a monthly basis. The study was based on 1946–1991 observations and two separate 100-year simulations corresponding to the present climate and a greenhouse warming climate. The teleconnection patterns are characterized by action centers and composite extreme anomaly (CEA) distributions. The definition and comparison of observed and simulated patterns include examination of time persistence, spatial coherence as well as consistent signatures between 500-mb height, sea level pressure, and surface air temperature.

For the present climate simulation, the GCM reproduces observed spatial and temporal variations of the action centers of four principal teleconnection patterns: the North Atlantic oscillation, the North Pacific oscillation, the Pacific/North American pattern, and the Eurasian pattern. Substantial model biases exist in the magnitude, regional structure as well as monthly transition of anomalies. The CEA regional characteristics are better simulated over land than over the oceans. For example, the model most accurately simulates the Eurasian pattern, which has its dominant action centers over Eurasia. In addition, all three climate variables exhibit substantial anomalies for each land-based action center. In contrast, over the oceans, the model systematically underestimates sea level pressure and 500-mb height CEAs, while it produces small surface temperature responses. It is suggested that atmospheric dynamics associated with flow instability is likely to be the dominant mechanism that generates these teleconnections, while the lack of interactive ocean dynamics may be responsible for small responses over the oceans.

In the greenhouse warming climate, the GCM continues to simulate the four interannual teleconnection patterns. Systematic changes, however, are found for the Pacific/North American and Eurasian patterns in winter, where the action centers shift to the east and the CEAs weaken over land. These results must be considered to be exploratory because of the use of a mixed layer ocean that does not include oceanic dynamics.

Full access
Arthur N. Samel, Wei-Chyung Wang, and Xin-Zhong Liang

Abstract

Yearly variations in the observed initial and final dates of heavy, persistent monsoon rainband precipitation across China are quantified. The development of a semiobjective analysis that identifies these values also makes it possible to calculate annual rainband duration and total rainfall. Relationships between total rainband precipitation and the Eurasian circulation are then determined. This research is designed such that observed rainband characteristics can be used in future investigations to evaluate GCM simulations.

Normalized daily precipitation time series are analyzed between 1951 and 1990 for 85 observation stations to develop criteria that describe general rainband characteristics throughout China. Rainfall is defined to be “heavy” if the daily value at a given location is greater than 1.5% of the annual mean total. Heavy precipitation is then shown to be “persistent” and is thus identified with the rainband when the 1.5% threshold is exceeded at least 6 times in a 25-day period. Finally, rainband initial (final) dates are defined to immediately follow (precede) a minimum period of 5 consecutive days with no measurable precipitation. A semiobjective analysis based on the above definitions and rainband climatology is then applied to the time series to determine annual initial and final dates.

Analysis application produces results that closely correspond to the systematic pattern observed across China, where the rainband arrives in the south during May, advances to the Yangtze River valley in June, and then to the north in July. Rainband duration (i.e., final − initial + 1) is approximately 30–40 days while total rainfall decreases from south to north. A significant positive correlation is found between total rainfall and duration interannual variability, where increased rainband precipitation corresponds to initial (final) dates that are anomalously early (late). No clear trends are identified except over north China, where both duration and total rainfall decrease substantially after 1967.

The Eurasian sea level pressure and 500-hPa height fields are then correlated with total rainfall over south China, the Yangtze River valley, and north China to identify statistically significant relationships. Results indicate that precipitation amount is influenced by the interaction of several circulation features. Total rainfall increases over south China when the surface Siberian high ridges to the south and is overrun by warm moist air aloft. Yangtze River valley precipitation intensifies when westward expansion of the subtropical high along with strengthening of the Siberian high and monsoon low cause moisture advection, upward motion, and the thermal gradient along the Mei-Yu front to increase. North China total rainfall increases in response to intense heating over the landmass, westward ridging of the subtropical high, and greater moisture transport over the region.

Full access
Wei Li, Yuanfu Xie, Shiow-Ming Deng, and Qi Wang

Abstract

In recent years, the Earth System Research Laboratory (ESRL) of the National Oceanic and Atmospheric Administration (NOAA) has developed a space and time mesoscale analysis system (STMAS), which is currently a sequential three-dimensional variational data assimilation (3DVAR) system and is developing into a sequential 4DVAR in the near future. It is implemented by using a multigrid method based on a variational approach to generate grid analyses. This study is to test how STMAS deals with 2D Doppler radar radial velocity and to what degree the 2D Doppler radar radial velocity can improve the conventional (in situ) observation analysis. Two idealized experiments and one experiment with real Doppler radar radial velocity data, handled by STMAS, demonstrated significant improvement of the conventional observation analysis. Because the radar radial wind data can provide additional wind information (even it is incomplete: e.g., missing tangential wind vector), the analyses by assimilating both radial wind data and conventional data showed better results than those by assimilating only conventional data. Especially in the case of sparse conventional data, radar radial wind data can provide significant information and improve the analyses considerably.

Full access
Guoxing Chen, Wei-Chyung Wang, and Jen-Ping Chen

Abstract

Atmosphere–ocean general circulation models tend to underestimate the solar radiative forcing by stratocumulus over the southeast Pacific, contributing to a warm sea surface temperature (SST) bias. The underestimation may be caused by biases in either macro- or micro- (or both) physical properties of clouds. This study used the WRF Model (incorporated with a physics-based two-moment cloud microphysical scheme) together with the 2008 Variability of the American Monsoon Systems Ocean–Cloud–Atmosphere–Land Study (VOCALS) field observations to investigate the effects of anthropogenic aerosols on the stratocumulus properties and their subsequent effects on the surface radiation balance. The effects were studied by comparing two cases: a control case with the anthropogenic aerosols and a sensitivity case without the anthropogenic aerosols. Results show that the control case produced cloud properties comparable with the measurements by aircraft and that aerosol–cloud microphysical interactions play an important role in regulating solar cloud radiative forcing. As expected, the anthropogenic aerosols increase the cloud droplet number and decrease the cloud droplet size, resulting in an enhancement of solar cloud radiative forcing and a reduction in solar radiation reaching the sea surface, up to a maximum of about 30 W m−2 near the coast. Results also show that aerosol–cloud microphysics–radiation interactions are sensitive to cloud fraction, thus highlighting the role of cloud diurnal variation in studying the cloud–radiation interactions. Analysis of the high-resolution (3 km) model simulations reveals that there exists an inherent scale dependence of aerosol–cloud–radiation interactions, with coarser horizontal resolution yielding a weaker variability.

Full access
Ling Ling Liu, Wei Wang, and Rui Xin Huang

Abstract

Wind stress and tidal dissipation are the most important sources of mechanical energy for maintaining the oceanic general circulation. The contribution of mechanical energy due to tropical cyclones can be a vitally important factor in regulating the oceanic general circulation and its variability. However, previous estimates of wind stress energy input were based on low-resolution wind stress data in which strong nonlinear events, such as tropical cyclones, were smoothed out.

Using a hurricane–ocean coupled model constructed from an axisymmetric hurricane model and a three-layer ocean model, the rate of energy input to the world’s oceans induced by tropical cyclones over the period from 1984 to 2003 was estimated. The energy input is estimated as follows: 1.62 TW to the surface waves and 0.10 TW to the surface currents (including 0.03 TW to the near-inertial motions). The rate of gravitational potential energy increase due to tropical cyclones is 0.05 TW. Both the energy input from tropical cyclones and the increase of gravitational potential energy of the ocean show strong interannual and decadal variability with an increasing rate of 16% over the past 20 years. The annual mean diapycnal upwelling induced by tropical cyclones over the past 20 years is estimated as 39 Sv (Sv ≡ 106 m3 s−1). Owing to tropical cyclones, diapycnal mixing in the upper ocean (below the mixed layer) is greatly enhanced. Within the regimes of strong activity of tropical cyclones, the increase of diapycnal diffusivity is on the order of (1 − 6) × 10−4 m2 s−1. The tropical cyclone–related energy input and diapycnal mixing may play an important role in climate variability, ecology, fishery, and environments.

Full access
Wei-Yu Chang, Jothiram Vivekanandan, and Tai-Chi Chen Wang

Abstract

A variational algorithm for estimating measurement error covariance and the attenuation of X-band polarimetric radar measurements is described. It concurrently uses both the differential reflectivity Z DR and propagation phase ΦDP. The majority of the current attenuation estimation techniques use only ΦDP. A few of the ΦDP-based methods use Z DR as a constraint for verifying estimated attenuation. In this paper, a detailed observing system simulation experiment was used for evaluating the performance of the variational algorithm. The results were compared with a single-coefficient ΦDP-based method. Retrieved attenuation from the variational method is more accurate than the results from a single coefficient ΦDP-based method. Moreover, the variational method is less sensitive to measurement noise in radar observations. The variational method requires an accurate description of error covariance matrices. Relative weights between measurements and background values (i.e., mean value based on long-term DSD measurements in the variational method) are determined by their respective error covariances. Instead of using ad hoc values, error covariance matrices of background and radar measurement are statistically estimated and their spatial characteristics are studied. The estimated error covariance shows higher values in convective regions than in stratiform regions, as expected. The practical utility of the variational attenuation correction method is demonstrated using radar field measurements from the Taiwan Experimental Atmospheric Mobile-Radar (TEAM-R) during 2008’s Southwest Monsoon Experiment/Terrain-Influenced Monsoon Rainfall Experiment (SoWMEX/TiMREX). The accuracy of attenuation-corrected X-band radar measurements is evaluated by comparing them with collocated S-band radar measurements.

Full access
Zhe Li, Huiwen Xue, Jen-Ping Chen, and Wei-Chyung Wang

Abstract

This study investigates the effects of meteorological conditions and aerosols on marine stratocumulus in the southeastern Pacific using the Weather Research and Forecasting (WRF) Model. Two regimes with different temperature and moisture conditions in the finest model domain are investigated. The western regime is around 87°–79°W, while the eastern regime is around 79°–71°W. In both regimes, cloud fraction, liquid water path (LWP), cloud thickness, and precipitation show significant diurnal cycles. Cloud fraction can be 0.83 during the night and down to 0.29 during the day in the western regime. The diurnal cycles in the eastern regime have smaller amplitudes but are still very strong. Stratocumulus properties also differ in the two regimes. Compared to the western regime, the eastern regime has lower temperature, higher relative humidity, and a more coupled boundary layer, leading to higher cloud fraction (by 0.11) and lower cloud-base height. The eastern regime also has lower inversion height that causes lower cloud-top height and thinner clouds and, hence, lower LWP and less precipitation.

Cloud microphysical properties are very sensitive to aerosols in both regimes. Increasing aerosols greatly increase cloud number concentration, decrease cloud effective radius, and suppress precipitation. Cloud macrophysical properties (cloud fraction, LWP) are not sensitive to aerosols in either regime, most notably in the eastern regime where precipitation amount is less. The changes in cloud fraction and LWP caused by changes in aerosol concentrations are smaller than the changes in the diurnal cycle and the spatial variability between the two regimes.

Full access
Wei Wu, Zhiping Wen, Renguang Wu, and Tongmei Wang

Abstract

In the present study, monthly mean objectively analyzed air–sea fluxes (OAFlux) and NCEP–Department of Energy (DOE) reanalysis datasets are employed to investigate air–sea interaction over the subtropical North Pacific during the El Niño–Southern Oscillation (ENSO) transition phase. A coupled low-frequency mode is identified, for which surface net heat flux and atmospheric circulation changes are strongly coupled during the ENSO transition phase. This mode features anomalous cooling (warming) and low-level anomalous cyclonic (anticyclonic) circulation over the subtropical North Pacific. When this mode is prominent, the atmospheric circulation anomalies lead to SST cooling (warming) through surface heat flux anomalies associated with increases (decreases) in the sea–air temperature and humidity differences induced by anomalous cold (warm) advection. In turn, positive heat flux anomalies induce more surface heating, and the SST cooling (warming) causes less (more) deep convective heating. The anomalous surface heating and deep convective heating contribute significantly to anomalous circulation through the thermal adaptation mechanism (adaptation of atmospheric circulation to vertical differential heating). This positive feedback favors the maintenance of these anomalous winds over the subtropical North Pacific.

Full access
Aiwen Lin, Hongji Zhu, Lunche Wang, Wei Gong, and Ling Zou

Abstract

Measurements of air temperature and precipitation at 35 stations in Hubei Province, China, during 1962–2011 are used to investigate the regional climate change. There is an increasing trend for observed air temperature (0.23°C decade−1), which is slightly higher than that from multiple model simulations/predictions [phase 5 of CMIP (CMIP5) datasets] (0.16°C decade−1). The observed precipitation increases at the rate of 11.4 mm decade−1, while the CMIP5 results indicate a much lower decreasing trend (0.8 mm decade−1) in this region. To examine the ecological responses to the climate changes in Hubei Province, annual gross primary productivity (GPP) and net primary productivity (NPP) products during 2000–10 and leaf area index (LAI) products during 1981–2011 are also analyzed. It is discovered that GPP, NPP, and LAI increase at the rate of 1.8 TgC yr−1 yr−1, 1.1 TgC yr−1 yr−1, and 0.14 m2 m−2 decade−1, respectively. A linear model is further used to conduct the correlation analyses between climatic parameters (i.e., air temperature and precipitation) and ecological indicators (i.e., GPP, NPP, and LAI). The results indicate that the air temperature has a significant positive correlation with LAI (R 2 = 0.311) and GPP (R 2 = 0.189); precipitation is positively correlated with NPP (R 2 = 0.209). Thus, it is concluded that the air temperature exerts a stronger effect on the ecosystem than precipitation in Hubei Province over the past decades.

Full access