Search Results
You are looking at 31 - 40 of 44 items for
- Author or Editor: William S. Olson x
- Refine by Access: All Content x
Abstract
Information about the characteristics of ice particles in clouds is necessary for improving our understanding of the states, processes, and subsequent modeling of clouds and precipitation for numerical weather prediction and climate analysis. Two NASA passive microwave radiometers, the satellite-borne Global Precipitation Measurement (GPM) Microwave Imager (GMI) and the aircraft-borne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR), measure vertically and horizontally polarized microwaves emitted by clouds (including precipitating particles) and Earth’s surface below. In this paper, GMI (or CoSMIR) data are analyzed with CloudSat (or aircraft-borne radar) data to find polarized difference (PD) signals not affected by the surface, thereby obtaining the information on ice particles. Statistical analysis of 4 years of GMI and CloudSat data, for the first time, reveals that optically thick clouds contribute positively to GMI PD at 166 GHz over all the latitudes and their positive magnitude of 166-GHz GMI PD varies little with latitude. This result suggests that horizontally oriented ice crystals in thick clouds are common from the tropics to high latitudes, which contrasts the result of Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) that horizontally oriented ice crystals are rare in optically thin ice clouds.
Abstract
Information about the characteristics of ice particles in clouds is necessary for improving our understanding of the states, processes, and subsequent modeling of clouds and precipitation for numerical weather prediction and climate analysis. Two NASA passive microwave radiometers, the satellite-borne Global Precipitation Measurement (GPM) Microwave Imager (GMI) and the aircraft-borne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR), measure vertically and horizontally polarized microwaves emitted by clouds (including precipitating particles) and Earth’s surface below. In this paper, GMI (or CoSMIR) data are analyzed with CloudSat (or aircraft-borne radar) data to find polarized difference (PD) signals not affected by the surface, thereby obtaining the information on ice particles. Statistical analysis of 4 years of GMI and CloudSat data, for the first time, reveals that optically thick clouds contribute positively to GMI PD at 166 GHz over all the latitudes and their positive magnitude of 166-GHz GMI PD varies little with latitude. This result suggests that horizontally oriented ice crystals in thick clouds are common from the tropics to high latitudes, which contrasts the result of Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) that horizontally oriented ice crystals are rare in optically thin ice clouds.
As a follow-on to the Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration in the United States, the National Space Development Agency of Japan, and the European Space Agency are considering a satellite mission to measure the global rainfall. The plan envisions an improved TRMM-like satellite and a constellation of eight satellites carrying passive microwave radiometers to provide global rainfall measurements at 3-h intervals. The success of this concept relies on the merits of rainfall estimates derived from passive microwave radiometers. This article offers a proof-of-concept demonstration of the benefits of using rainfall and total precipitable water (TPW) information derived from such instruments in global data assimilation with observations from the TRMM Microwave Imager (TMI) and two Special Sensor Microwave/Imager (SSM/I) instruments.
Global analyses that optimally combine observations from diverse sources with physical models of atmospheric and land processes can provide a comprehensive description of the climate systems. Currently, such data analyses contain significant errors in primary hydrological fields such as precipitation and evaporation, especially in the Tropics. It is shown that assimilating the 6-h-averaged TMI and SSM/I surface rain rate and TPW retrievals improves not only the hydrological cycle but also key climate parameters such as clouds, radiation, and the upper-tropospheric moisture in the analysis produced by the Goddard Earth Observing System Data Assimilation System, as verified against radiation measurements by the Clouds and the Earth's Radiant Energy System instrument and brightness temperature observations by the Television Infrared Observational Satellite Operational Vertical Sounder instruments.
Typically, rainfall assimilation improves clouds and radiation in areas of active convection, as well as the latent heating and large-scale motions in the Tropics, while TPW assimilation leads to reduced moisture biases and improved radiative fluxes in clear-sky regions. Ensemble forecasts initialized with analyses that incorporate TMI and SSM/I rainfall and TPW data also yield better short-range predictions of geopotential heights, winds, and precipitation in the Tropics.
These results were obtained using a variational procedure based on a 6-h time integration of a column model of moist physics with prescribed dynamical and other physical tendencies. The procedure estimates moisture tendency corrections at observation locations by minimizing the least square differences between the observed TPW and rain rates and those generated by the column model over a 6-h analysis window. These tendency corrections are then applied during the assimilation cycle to compensate for errors arising from both initial conditions and deficiencies in model physics. Our results point to the importance of addressing deficiencies in model physics in assimilating data types such as precipitation, for which the forward model based on convective parameterizations may have significant systematic errors.
This study offers a compelling illustration of the potential of using rainfall and TPW information derived from passive microwave instruments to significantly improve the quality of four-dimensional global datasets for climate analysis and weather forecasting applications.
As a follow-on to the Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration in the United States, the National Space Development Agency of Japan, and the European Space Agency are considering a satellite mission to measure the global rainfall. The plan envisions an improved TRMM-like satellite and a constellation of eight satellites carrying passive microwave radiometers to provide global rainfall measurements at 3-h intervals. The success of this concept relies on the merits of rainfall estimates derived from passive microwave radiometers. This article offers a proof-of-concept demonstration of the benefits of using rainfall and total precipitable water (TPW) information derived from such instruments in global data assimilation with observations from the TRMM Microwave Imager (TMI) and two Special Sensor Microwave/Imager (SSM/I) instruments.
Global analyses that optimally combine observations from diverse sources with physical models of atmospheric and land processes can provide a comprehensive description of the climate systems. Currently, such data analyses contain significant errors in primary hydrological fields such as precipitation and evaporation, especially in the Tropics. It is shown that assimilating the 6-h-averaged TMI and SSM/I surface rain rate and TPW retrievals improves not only the hydrological cycle but also key climate parameters such as clouds, radiation, and the upper-tropospheric moisture in the analysis produced by the Goddard Earth Observing System Data Assimilation System, as verified against radiation measurements by the Clouds and the Earth's Radiant Energy System instrument and brightness temperature observations by the Television Infrared Observational Satellite Operational Vertical Sounder instruments.
Typically, rainfall assimilation improves clouds and radiation in areas of active convection, as well as the latent heating and large-scale motions in the Tropics, while TPW assimilation leads to reduced moisture biases and improved radiative fluxes in clear-sky regions. Ensemble forecasts initialized with analyses that incorporate TMI and SSM/I rainfall and TPW data also yield better short-range predictions of geopotential heights, winds, and precipitation in the Tropics.
These results were obtained using a variational procedure based on a 6-h time integration of a column model of moist physics with prescribed dynamical and other physical tendencies. The procedure estimates moisture tendency corrections at observation locations by minimizing the least square differences between the observed TPW and rain rates and those generated by the column model over a 6-h analysis window. These tendency corrections are then applied during the assimilation cycle to compensate for errors arising from both initial conditions and deficiencies in model physics. Our results point to the importance of addressing deficiencies in model physics in assimilating data types such as precipitation, for which the forward model based on convective parameterizations may have significant systematic errors.
This study offers a compelling illustration of the potential of using rainfall and TPW information derived from passive microwave instruments to significantly improve the quality of four-dimensional global datasets for climate analysis and weather forecasting applications.
The steeply rising coastal terrain of southeast Alaska can produce a wide variety of terrain-induced flows such as barrier jets, gap flows, and downslope wind storms. This study uses a combination of satellite remote sensing, field observations, and modeling to improve our understanding of the dynamics of these flows. After examining several thousand synthetic aperture radar (SAR) high-resolution wind speed images over the Gulf of Alaska, several subclasses of barrier jets were identified that do not fit the current conceptual model of barrier jet development. This conceptual model consists of an acceleration and turning of the ambient cross-barrier flow into the along-barrier direction when the ambient low-level flow is blocked by terrain; however, the SAR imagery showed many barrier jet cases with significant flow variability in the along-coast direction as well as evidence for the influence of cold, dry continental air exiting the gaps in coastal terrain. A subclass of jets has been observed where the transition from the coastal to the offshore flow is abrupt.
The results from these climatological studies have motivated modeling studies of selected events as well as field observations from the Southeast Alaska Regional Jets (SARJET) experiment field campaign in the Gulf of Alaska during fall of 2004. This paper will highlight preliminary results obtained during SARJET, which collected in situ measurements of barrier jets and gap flows using the University of Wyoming's King Air research aircraft.
The steeply rising coastal terrain of southeast Alaska can produce a wide variety of terrain-induced flows such as barrier jets, gap flows, and downslope wind storms. This study uses a combination of satellite remote sensing, field observations, and modeling to improve our understanding of the dynamics of these flows. After examining several thousand synthetic aperture radar (SAR) high-resolution wind speed images over the Gulf of Alaska, several subclasses of barrier jets were identified that do not fit the current conceptual model of barrier jet development. This conceptual model consists of an acceleration and turning of the ambient cross-barrier flow into the along-barrier direction when the ambient low-level flow is blocked by terrain; however, the SAR imagery showed many barrier jet cases with significant flow variability in the along-coast direction as well as evidence for the influence of cold, dry continental air exiting the gaps in coastal terrain. A subclass of jets has been observed where the transition from the coastal to the offshore flow is abrupt.
The results from these climatological studies have motivated modeling studies of selected events as well as field observations from the Southeast Alaska Regional Jets (SARJET) experiment field campaign in the Gulf of Alaska during fall of 2004. This paper will highlight preliminary results obtained during SARJET, which collected in situ measurements of barrier jets and gap flows using the University of Wyoming's King Air research aircraft.
Abstract
Capitalizing on recently released reanalysis datasets and diabatic heating estimates based on Tropical Rainfall Measuring Mission (TRMM), the authors have conducted a composite analysis of vertical anomalous heating structures associated with the Madden–Julian oscillation (MJO). Because diabatic heating lies at the heart of prevailing MJO theories, the intention of this effort is to provide new insights into the fundamental physics of the MJO. However, some discrepancies in the composite vertical MJO heating profiles are noted among the datasets, particularly between three reanalyses and three TRMM estimates. A westward tilting with altitude in the vertical heating structure of the MJO is clearly evident during its eastward propagation based on three reanalysis datasets, which is particularly pronounced when the MJO migrates from the equatorial eastern Indian Ocean (EEIO) to the western Pacific (WP). In contrast, this vertical tilt in heating structure is not readily seen in the three TRMM products. Moreover, a transition from a shallow to deep heating structure associated with the MJO is clearly evident in a pressure–time plot over both the EEIO and WP in three reanalysis datasets. Although this vertical heating structure transition is detectable over the WP in two TRMM products, it is weakly defined in another dataset over the WP and in all three TRMM datasets over the EEIO.
The vertical structures of radiative heating QR associated with the MJO are also analyzed based on TRMM and two reanalysis datasets. A westward vertical tilt in QR is apparent in all these datasets: that is, the low-level QR is largely in phase of convection, whereas QR in the upper troposphere lags the maximum convection. The results also suggest a potentially important role of radiative heating for the MJO, particularly over the Indian Ocean. Caveats in heating estimates based on both the reanalysis datasets and TRMM are briefly discussed.
Abstract
Capitalizing on recently released reanalysis datasets and diabatic heating estimates based on Tropical Rainfall Measuring Mission (TRMM), the authors have conducted a composite analysis of vertical anomalous heating structures associated with the Madden–Julian oscillation (MJO). Because diabatic heating lies at the heart of prevailing MJO theories, the intention of this effort is to provide new insights into the fundamental physics of the MJO. However, some discrepancies in the composite vertical MJO heating profiles are noted among the datasets, particularly between three reanalyses and three TRMM estimates. A westward tilting with altitude in the vertical heating structure of the MJO is clearly evident during its eastward propagation based on three reanalysis datasets, which is particularly pronounced when the MJO migrates from the equatorial eastern Indian Ocean (EEIO) to the western Pacific (WP). In contrast, this vertical tilt in heating structure is not readily seen in the three TRMM products. Moreover, a transition from a shallow to deep heating structure associated with the MJO is clearly evident in a pressure–time plot over both the EEIO and WP in three reanalysis datasets. Although this vertical heating structure transition is detectable over the WP in two TRMM products, it is weakly defined in another dataset over the WP and in all three TRMM datasets over the EEIO.
The vertical structures of radiative heating QR associated with the MJO are also analyzed based on TRMM and two reanalysis datasets. A westward vertical tilt in QR is apparent in all these datasets: that is, the low-level QR is largely in phase of convection, whereas QR in the upper troposphere lags the maximum convection. The results also suggest a potentially important role of radiative heating for the MJO, particularly over the Indian Ocean. Caveats in heating estimates based on both the reanalysis datasets and TRMM are briefly discussed.
Abstract
The Madden–Julian oscillation (MJO) is a fundamental mode of the tropical atmosphere variability that exerts significant influence on global climate and weather systems. Current global circulation models, unfortunately, are incapable of robustly representing this form of variability. Meanwhile, a well-accepted and comprehensive theory for the MJO is still elusive. To help address this challenge, recent emphasis has been placed on characterizing the vertical structures of the MJO. In this study, the authors analyze vertical heating structures by utilizing recently updated heating estimates based on the Tropical Rainfall Measuring Mission (TRMM) from two different latent heating estimates and one radiative heating estimate. Heating structures from two different versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses/forecasts are also examined. Because of the limited period of available datasets at the time of this study, the authors focus on the winter season from October 1998 to March 1999.
The results suggest that diabatic heating associated with the MJO convection in the ECMWF outputs exhibits much stronger amplitude and deeper structures than that in the TRMM estimates over the equatorial eastern Indian Ocean and western Pacific. Further analysis illustrates that this difference might be due to stronger convective and weaker stratiform components in the ECMWF estimates relative to the TRMM estimates, with the latter suggesting a comparable contribution by the stratiform and convective counterparts in contributing to the total rain rate. Based on the TRMM estimates, it is also illustrated that the stratiform fraction of total rain rate varies with the evolution of the MJO. Stratiform rain ratio over the Indian Ocean is found to be 5% above (below) average for the disturbed (suppressed) phase of the MJO. The results are discussed with respect to whether these heating estimates provide enough convergent information to have implications on theories of the MJO and whether they can help validate global weather and climate models.
Abstract
The Madden–Julian oscillation (MJO) is a fundamental mode of the tropical atmosphere variability that exerts significant influence on global climate and weather systems. Current global circulation models, unfortunately, are incapable of robustly representing this form of variability. Meanwhile, a well-accepted and comprehensive theory for the MJO is still elusive. To help address this challenge, recent emphasis has been placed on characterizing the vertical structures of the MJO. In this study, the authors analyze vertical heating structures by utilizing recently updated heating estimates based on the Tropical Rainfall Measuring Mission (TRMM) from two different latent heating estimates and one radiative heating estimate. Heating structures from two different versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses/forecasts are also examined. Because of the limited period of available datasets at the time of this study, the authors focus on the winter season from October 1998 to March 1999.
The results suggest that diabatic heating associated with the MJO convection in the ECMWF outputs exhibits much stronger amplitude and deeper structures than that in the TRMM estimates over the equatorial eastern Indian Ocean and western Pacific. Further analysis illustrates that this difference might be due to stronger convective and weaker stratiform components in the ECMWF estimates relative to the TRMM estimates, with the latter suggesting a comparable contribution by the stratiform and convective counterparts in contributing to the total rain rate. Based on the TRMM estimates, it is also illustrated that the stratiform fraction of total rain rate varies with the evolution of the MJO. Stratiform rain ratio over the Indian Ocean is found to be 5% above (below) average for the disturbed (suppressed) phase of the MJO. The results are discussed with respect to whether these heating estimates provide enough convergent information to have implications on theories of the MJO and whether they can help validate global weather and climate models.
Abstract
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range from approximately 50% at 1 mm h−1 to 20% at 14 mm h−1. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day−1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%–15% at 5 mm day−1, with proportionate reductions in latent heating sampling errors.
Abstract
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range from approximately 50% at 1 mm h−1 to 20% at 14 mm h−1. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day−1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%–15% at 5 mm day−1, with proportionate reductions in latent heating sampling errors.
Abstract
A 3D growth model is used to simulate pristine ice crystals, which are aggregated using a collection algorithm to create larger, multicrystal particles. The simulated crystals and aggregates have mass-versus-size and fractal properties that are consistent with field observations. The growth/collection model is used to generate a large database of snow particles, and the single-scattering properties of each particle are computed using the discrete dipole approximation to account for the nonspherical geometries of the particles. At 13.6 and 35.5 GHz, the bulk radar reflectivities of nonspherical snow particle polydispersions differ from those of more approximate spherical, homogeneous, ice–air particle polydispersions that have the same particle size distributions, although the reflectivities of the nonspherical particles are roughly approximated by polydispersions of spheres of 0.1–0.2 g cm−3 density. At higher microwave frequencies, such as 165.5 GHz, the bulk extinction (and scattering) coefficients of the nonspherical snow polydispersions are comparable to those of low-density spheres, but the asymmetry parameters of the nonspherical particles are substantially less than those of spheres for a broad range of assumed spherical particle densities. Because of differences in the asymmetry of scatter, simulated microwave-scattering depressions using nonspherical particles may well exceed those of spheres for snow layers with the same vertical water path. It may be concluded that, in precipitation remote sensing applications that draw upon input from radar and/or radiometer observations spanning a range of microwave frequencies, nonspherical snow particle models should be used to properly interpret the observations.
Abstract
A 3D growth model is used to simulate pristine ice crystals, which are aggregated using a collection algorithm to create larger, multicrystal particles. The simulated crystals and aggregates have mass-versus-size and fractal properties that are consistent with field observations. The growth/collection model is used to generate a large database of snow particles, and the single-scattering properties of each particle are computed using the discrete dipole approximation to account for the nonspherical geometries of the particles. At 13.6 and 35.5 GHz, the bulk radar reflectivities of nonspherical snow particle polydispersions differ from those of more approximate spherical, homogeneous, ice–air particle polydispersions that have the same particle size distributions, although the reflectivities of the nonspherical particles are roughly approximated by polydispersions of spheres of 0.1–0.2 g cm−3 density. At higher microwave frequencies, such as 165.5 GHz, the bulk extinction (and scattering) coefficients of the nonspherical snow polydispersions are comparable to those of low-density spheres, but the asymmetry parameters of the nonspherical particles are substantially less than those of spheres for a broad range of assumed spherical particle densities. Because of differences in the asymmetry of scatter, simulated microwave-scattering depressions using nonspherical particles may well exceed those of spheres for snow layers with the same vertical water path. It may be concluded that, in precipitation remote sensing applications that draw upon input from radar and/or radiometer observations spanning a range of microwave frequencies, nonspherical snow particle models should be used to properly interpret the observations.
Abstract
In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar–radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice–air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraftborne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.
Abstract
In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar–radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice–air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraftborne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.
Satellite Data Simulator Unit
A Multisensor, Multispectral Satellite Simulator Package
Abstract
This paper addresses real-time precipitation forecasts from a multianalysis–multimodel superensemble. The methodology for the construction of the superensemble forecasts follows previous recent publications on this topic. This study includes forecasts from multimodels of a number of global operational centers. A multianalysis component based on the Florida State University (FSU) global spectral model that utilizes TRMM and SSM/I datasets and a number of rain-rate algorithms is also included. The difference in the analysis arises from the use of these rain rates within physical initialization that produces distinct differences among these components in the divergence, heating, moisture, and rain-rate descriptions. A total of 11 models, of which 5 represent global operational models and 6 represent multianalysis forecasts from the FSU model initialized by different rain-rate algorithms, are included in the multianalysis–multimodel system studied here. In this paper, “multimodel” refers to different models whose forecasts are being assimilated for the construction of the superensemble. “Multianalysis” refers to different initial analysis contributing to forecasts from the same model. The term superensemble is being used here to denote the bias-corrected forecasts based on the products derived from the multimodel and the multianalysis. The training period is covered by nearly 120 forecast experiments prior to 1 January 2000 for each of the multimodels. These are all 3-day forecasts. The statistical bias of the models is determined from multiple linear regression of these forecasts against a “best” rainfall analysis field that is based on TRMM and SSM/I datasets and using the rain-rate algorithms recently developed at NASA Goddard Space Flight Center. This paper discusses the results of real-time rainfall forecasts based on this system. The main results of this study are that the multianalysis–multimodel superensemble has a much higher skill than the participating member models. The skill of this system is higher than those of the ensemble mean that assigns a weight of 1.0 to all including the poorer models and the ensemble mean of bias-removed individual models. The selective weights for the entire multianalysis–multimodel superensemble forecast system make it superior to individual models and the above mean representations. The skill of precipitation forecasts is addressed in several ways. The skill of the superensemble-based rain rates is shown to be higher than the following: (a) individual model's skills with and without physical initialization, (b) skill of the ensemble mean, and (c) skill of the ensemble mean of individually bias-removed models.
The equitable-threat scores at many thresholds of rain are also examined for the various models and noted that for days 1–3 of forecasts, the superensemble-based forecasts do have the highest skills. The training phase is a major component of the superensemble. Issues on optimizing the number of training days is addressed by examining training with days of high forecast skill versus training with low forecast skill, and training with the best available rain-rate datasets versus those from poor representations of rain. Finally the usefulness of superensemble forecasts of rain for providing possible guidance for flood events such as the one over Mozambique during February 2000 is shown.
Abstract
This paper addresses real-time precipitation forecasts from a multianalysis–multimodel superensemble. The methodology for the construction of the superensemble forecasts follows previous recent publications on this topic. This study includes forecasts from multimodels of a number of global operational centers. A multianalysis component based on the Florida State University (FSU) global spectral model that utilizes TRMM and SSM/I datasets and a number of rain-rate algorithms is also included. The difference in the analysis arises from the use of these rain rates within physical initialization that produces distinct differences among these components in the divergence, heating, moisture, and rain-rate descriptions. A total of 11 models, of which 5 represent global operational models and 6 represent multianalysis forecasts from the FSU model initialized by different rain-rate algorithms, are included in the multianalysis–multimodel system studied here. In this paper, “multimodel” refers to different models whose forecasts are being assimilated for the construction of the superensemble. “Multianalysis” refers to different initial analysis contributing to forecasts from the same model. The term superensemble is being used here to denote the bias-corrected forecasts based on the products derived from the multimodel and the multianalysis. The training period is covered by nearly 120 forecast experiments prior to 1 January 2000 for each of the multimodels. These are all 3-day forecasts. The statistical bias of the models is determined from multiple linear regression of these forecasts against a “best” rainfall analysis field that is based on TRMM and SSM/I datasets and using the rain-rate algorithms recently developed at NASA Goddard Space Flight Center. This paper discusses the results of real-time rainfall forecasts based on this system. The main results of this study are that the multianalysis–multimodel superensemble has a much higher skill than the participating member models. The skill of this system is higher than those of the ensemble mean that assigns a weight of 1.0 to all including the poorer models and the ensemble mean of bias-removed individual models. The selective weights for the entire multianalysis–multimodel superensemble forecast system make it superior to individual models and the above mean representations. The skill of precipitation forecasts is addressed in several ways. The skill of the superensemble-based rain rates is shown to be higher than the following: (a) individual model's skills with and without physical initialization, (b) skill of the ensemble mean, and (c) skill of the ensemble mean of individually bias-removed models.
The equitable-threat scores at many thresholds of rain are also examined for the various models and noted that for days 1–3 of forecasts, the superensemble-based forecasts do have the highest skills. The training phase is a major component of the superensemble. Issues on optimizing the number of training days is addressed by examining training with days of high forecast skill versus training with low forecast skill, and training with the best available rain-rate datasets versus those from poor representations of rain. Finally the usefulness of superensemble forecasts of rain for providing possible guidance for flood events such as the one over Mozambique during February 2000 is shown.