Search Results

You are looking at 31 - 40 of 40 items for

  • Author or Editor: Xiang Li x
  • Refine by Access: All Content x
Clear All Modify Search
Lihong Wei
,
Xihui Gu
,
Louise J. Slater
,
Yangchen Lai
,
Dongdong Kong
,
Jianyu Liu
,
Jianfeng Li
, and
Xiang Zhang

Abstract

Precipitation induced by tropical cyclones (TCs) over cities is associated with both TC duration and urbanization; however, observational evidence of the impacts of TC duration and urbanization on precipitation in megalopolises is limited. In this study, the Yangtze River Delta (YRD) of eastern China is taken as a typical region because this region has been experiencing both rapid urbanization processes and frequent TC attacks. During 1979–2018, we find reduced translation speed and increased meandering of TCs over the YRD, resulting in increased TC duration and the proportion of TC stalling in this region. The correlation between TC duration and TC-induced precipitation amount is significant across the YRD region but is relatively weak in areas with faster urbanization expansion rates. Long-term increases in TC-induced precipitation are found in both rural and urban areas but are larger for urban areas. Urbanization plays an important role in enhancing TC-induced precipitation over urban areas of the YRD region. Areas with faster urbanization expansion rates and longer TC durations have larger TC-induced precipitation, suggesting that urban expansion and TC duration jointly amplify TC-induced precipitation. Our findings suggest that urban planners, in areas potentially affected by TCs, should consider adaptation measures to mitigate the impacts of urban rainstorms amplified by the combined effects of TCs and urbanization.

Significance Statement

The combined impacts of tropical cyclone (TC) duration and urbanization on precipitation have received limited attention, especially in populated urban areas. Here, we focus on the Yangtze River Delta (YRD) of eastern China, an urban agglomeration frequently impacted by TCs. We find that slowed translation and increased meandering of TCs have led to longer TC duration and stalling over the 500-km YRD buffer during 1979–2018. Significant positive correlation between TC duration and TC-induced precipitation indicates that longer-lasting TCs trigger greater precipitation. The greater TC-induced precipitation due to increased TC duration is further amplified by urban expansion.

Restricted access
Baoqiang Xiang
,
Shian-Jiann Lin
,
Ming Zhao
,
Shaoqing Zhang
,
Gabriel Vecchi
,
Tim Li
,
Xianan Jiang
,
Lucas Harris
, and
Jan-Huey Chen

Abstract

While tropical cyclone (TC) prediction, in particular TC genesis, remains very challenging, accurate prediction of TCs is critical for timely preparedness and mitigation. Using a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the authors studied the predictability of two destructive landfall TCs: Hurricane Sandy in 2012 and Super Typhoon Haiyan in 2013. Results demonstrate that the geneses of these two TCs are highly predictable with the maximum prediction lead time reaching 11 days. The “beyond weather time scale” predictability of tropical cyclogenesis is primarily attributed to the model’s skillful prediction of the intraseasonal Madden–Julian oscillation (MJO) and the westward propagation of easterly waves. Meanwhile, the landfall location and time can be predicted one week ahead for Sandy’s U.S landfall, and two weeks ahead for Haiyan’s landing in the Philippines. The success in predicting Sandy and Haiyan, together with low false alarms, indicates the potential of using the GFDL coupled model for extended-range predictions of TCs.

Full access
Shenjia Ma
,
Chaohui Chen
,
Hongrang He
,
Jie Xiang
,
Shengjie Chen
,
Yi Li
,
Yongqiang Jiang
,
Dan Wu
, and
Hao Luo

Abstract

In this study, a convection-allowing ensemble prediction experiment was conducted on a strong convective weather process, based on the local breeding growth mode (LBGM) method proposed according to the strongly local nature of the convective-scale weather system. A comparative analysis of the evolution characteristics of the initial perturbation was also performed, considering the results from the traditional breeding growth mode (BGM) method, to enhance understanding and application of this new initial perturbation generation method. The experimental results showed that LBGM results in the perturbation distribution exhibiting characteristics more evident of flow dependence, and an initial perturbation with greater definite kinetic significance was derived. Information entropy theory could well measure the amount of information contained in the perturbation distribution, indicating that the innovative initial perturbation generation method can increase the amount of local information associated with the initial perturbation. With regard to the physical perturbation quantities, the LBGM method can improve the dispersion of the ensemble prediction system, thereby solving the problem of insufficient ensemble spread of prediction systems obtained by the traditional BGM method. Simultaneously, the root-mean-square error of the prediction can be further reduced, and the predicted precipitation distribution is closer to the observed precipitation, thereby improving the prediction effect of the convection-allowing ensemble prediction. The LBGM method has advantages compared to the traditional method and provides a new theoretical basis for further development of initial perturbation technologies for convection-allowing ensemble prediction.

Full access
Xianan Jiang
,
Baoqiang Xiang
,
Ming Zhao
,
Tim Li
,
Shian-Jiann Lin
,
Zhuo Wang
, and
Jan-Huey Chen

Abstract

Motivated by increasing demand in the community for intraseasonal predictions of weather extremes, predictive skill of tropical cyclogenesis is investigated in this study based on a global coupled model system. Limited intraseasonal cyclogenesis prediction skill with a high false alarm rate is found when averaged over about 600 tropical cyclones (TCs) over global oceans from 2003 to 2013, particularly over the North Atlantic (NA). Relatively skillful genesis predictions with more than 1-week lead time are only evident for about 10% of the total TCs. Further analyses suggest that TCs with relatively higher genesis skill are closely associated with the Madden–Julian oscillation (MJO) and tropical synoptic waves, with their geneses strongly phase-locked to the convectively active region of the MJO and low-level cyclonic vorticity associated with synoptic-scale waves. Moreover, higher cyclogenesis prediction skill is found for TCs that formed during the enhanced periods of strong MJO episodes than those during weak or suppressed MJO periods. All these results confirm the critical role of the MJO and tropical synoptic waves for intraseasonal prediction of TC activity. Tropical cyclogenesis prediction skill in this coupled model is found to be closely associated with model predictability of several large-scale dynamical and thermodynamical fields. Particularly over the NA, higher predictability of low-level relative vorticity, midlevel humidity, and vertical zonal wind shear is evident along a tropical belt from the West Africa coast to the Caribbean Sea, in accord with more predictable cyclogenesis over this region. Over the extratropical NA, large-scale variables exhibit less predictability due to influences of extratropical systems, leading to poor cyclogenesis predictive skill.

Full access
Bin Wang
,
Juan Li
,
Mark A. Cane
,
Jian Liu
,
Peter J. Webster
,
Baoqiang Xiang
,
Hye-Mi Kim
,
Jian Cao
, and
Kyung-Ja Ha

Abstract

Predictions of changes of the land monsoon rainfall (LMR) in the coming decades are of vital importance for successful sustainable economic development. Current dynamic models, though, have shown little skill in the decadal prediction of the Northern Hemisphere (NH) LMR (NHLMR). The physical basis and predictability for such predictions remain largely unexplored. Decadal change of the NHLMR reflects changes in the total NH continental precipitation, tropical general circulation, and regional land monsoon rainfall over northern Africa, India, East Asia, and North America. Using observations from 1901 to 2014 and numerical experiments, it is shown that the decadal variability of the NHLMR is rooted primarily in (i) the north–south hemispheric thermal contrast in the Atlantic–Indian Ocean sector measured by the North Atlantic–south Indian Ocean dipole (NAID) sea surface temperature (SST) index and (ii) an east–west thermal contrast in the Pacific measured by an extended El Niño–Southern Oscillation (XEN) index. Results from a 500-yr preindustrial control experiment demonstrate that the leading mode of decadal NHLMR and the associated NAID and XEN SST anomalies may be largely an internal mode of Earth’s climate system, although possibly modified by natural and anthropogenic external forcing. A 51-yr, independent forward-rolling decadal hindcast was made with a hybrid dynamic conceptual model and using the NAID index predicted by a multiclimate model ensemble. The results demonstrate that the decadal changes in the NHLMR can be predicted approximately a decade in advance with significant skills, opening a promising way forward for decadal predictions of regional land monsoon rainfall worldwide.

Open access
Dongliang Yuan
,
Xiang Li
,
Zheng Wang
,
Yao Li
,
Jing Wang
,
Ya Yang
,
Xiaoyue Hu
,
Shuwen Tan
,
Hui Zhou
,
Adhitya Kusuma Wardana
,
Dewi Surinati
,
Adi Purwandana
,
Mochamad Furqon Azis Ismail
,
Praditya Avianto
,
Dirham Dirhamsyah
,
Zainal Arifin
, and
Jin-Song von Storch

Abstract

The Maluku Channel is a major opening of the eastern Indonesian Seas to the western Pacific Ocean, the upper-ocean currents of which have rarely been observed historically. During December 2012–November 2016, long time series of the upper Maluku Channel transport are measured successfully for the first time using subsurface oceanic moorings. The measurements show significant intraseasonal-to-interannual variability of over 14 Sv (1 Sv ≡ 106 m3 s−1) in the upper 300 m or so, with a mean transport of 1.04–1.31 Sv northward and a significant southward interannual change of over 3.5 Sv in the spring of 2014. Coincident with the interannual transport change is the Mindanao Current, choked at the entrance of the Indonesian Seas, which is significantly different from its climatological retroflection in fall–winter. A high-resolution numerical simulation suggests that the variations of the Maluku Channel currents are associated with the shifting of the Mindanao Current retroflection. It is suggested that the shifting of the Mindanao Current outside the Sulawesi Sea in the spring of 2014 elevates the sea level at the entrance of the Indonesian Seas, which drives the anomalous transport through the Maluku Channel. The results suggest the importance of the western boundary current nonlinearity in driving the transport variability of the Indonesian Throughflow.

Full access
Xiang Li
,
Dongliang Yuan
,
Yao Li
,
Zheng Wang
,
Jing Wang
,
Xiaoyue Hu
,
Ya Yang
,
Corry Corvianawatie
,
Dewi Surinati
,
Asep Sandra Budiman
,
Ahmad Bayhaqi
,
Praditya Avianto
,
Edi Kusmanto
,
Priyadi Dwi Santoso
,
Adi Purwandana
,
Mochamad Furqon Azis Ismail
,
Dirhamsyah
, and
Zainal Arifin

Abstract

The currents and water mass properties at the Pacific entrance of the Indonesian seas are studied using measurements of three subsurface moorings deployed between the Talaud and Halmahera Islands. The moored current meter data show northeastward mean currents toward the Pacific Ocean in the upper 400 m during the nearly 2-yr mooring period, with the maximum velocity in the northern part of the channel. The mean transport between 60- and 300-m depths is estimated to be 10.1–13.2 Sv (1 Sv ≡ 106 m3 s−1) during 2016–17, when all three moorings have measurements. The variability of the along-channel velocity is dominated by low-frequency signals (periods > 150 days), with northeastward variations in boreal winter and southwestward variations in summer in the superposition of the annual and semiannual harmonics. The current variations evidence the seasonal movement of the Mindanao Current retroflection, which is supported by satellite sea level and ocean color data, showing a cyclonic intrusion into the northern Maluku Sea in boreal winter whereas a leaping path occurs north of the Talaud Islands in summer. During Apri–July, the moored CTDs near 200 m show southwestward currents carrying the salty South Pacific Tropical Water into the Maluku Sea.

Full access
Xueli Yin
,
Dongliang Yuan
,
Xiang Li
,
Zheng Wang
,
Yao Li
,
Corry Corvianawatie
,
Adhitya Kusuma Wardana
,
Dewi Surinati
,
Adi Purwandana
,
Mochamad Furqon Azis Ismail
,
Asep Sandra Budiman
,
Ahmad Bayhaqi
,
Praditya Avianto
,
Edi Kusmanto
,
Priyadi Dwi Santoso
,
Dirhamsyah
, and
Zainal Arifin

Abstract

The mean circulation and volume budgets in the upper 1200 m of the Maluku Sea are studied using multiyear current meter measurements of four moorings in the Maluku Channel and of one synchronous mooring in the Lifamatola Passage. The measurements show that the mean current in the depth range of 60–450 m is northward toward the Pacific Ocean with a mean transport of 2.07–2.60 Sv (1 Sv ≡ 106 m3 s−1). In the depth range of 450–1200 m, a mean western boundary current (WBC) flows southward through the western Maluku Sea and connects with the southward flow in the Lifamatola Passage. The mean currents in the central-eastern Maluku Channel are found to flow northward at this depth range, suggesting an anticlockwise western intensified gyre circulation in the middle layer of the Maluku Sea. Budget analyses suggest that the mean transport of the intermediate WBC is 1.83–2.25 Sv, which is balanced by three transports: 1) 0.62–0.93 Sv southward transport into the Seram–Banda Seas through the Lifamatola Passage, 2) 0.97–1.01 Sv returning to the western Pacific Ocean through the central-eastern Maluku Channel, and 3) a residual transport surplus, suggested to upwell to the upper layer joining the northward transport into the Pacific Ocean. The dynamics of the intermediate gyre circulation are explained by the potential vorticity (PV) integral constraint of a semienclosed basin.

Significance Statement

The Indonesian Throughflow plays an important role in the global ocean circulation and climate variations. Existing studies of the Indonesian Throughflow have focused on the upper thermocline currents. Here we identify, using mooring observations, an intermediate western boundary current with the core at 800–1000-m depth in the Maluku Sea, transporting intermediate waters from the Pacific into the Seram–Banda Seas through the Lifamatola Passage. Potential vorticity balance suggests an anticlockwise gyre circulation in the intermediate Maluku Sea, which is evidenced by the mooring and model data. Transport estimates suggest northward countercurrent in the upper Maluku Sea toward the Pacific, supplied by the Lifamatola Passage transport and upwelling from the intermediate layer in the Maluku Sea. Our results suggest the importance of the intermediate Indonesian Throughflow in global ocean circulation and overturn. More extensive investigations of the Indo-Pacific intermediate ocean circulation should be conducted to improve our understanding of global ocean overturn and heat and CO2 storages.

Free access
Xiang-Yu Li
,
Hailong Wang
,
Jingyi Chen
,
Satoshi Endo
,
Geet George
,
Brian Cairns
,
Seethala Chellappan
,
Xubin Zeng
,
Simon Kirschler
,
Christiane Voigt
,
Armin Sorooshian
,
Ewan Crosbie
,
Gao Chen
,
Richard Anthony Ferrare
,
William I. Gustafson Jr.
,
Johnathan W. Hair
,
Mary M. Kleb
,
Hongyu Liu
,
Richard Moore
,
David Painemal
,
Claire Robinson
,
Amy Jo Scarino
,
Michael Shook
,
Taylor J. Shingler
,
Kenneth Lee Thornhill
,
Florian Tornow
,
Heng Xiao
,
Luke D. Ziemba
, and
Paquita Zuidema

Abstract

Large-eddy simulation (LES) is able to capture key boundary layer (BL) turbulence and cloud processes. Yet, large-scale forcing and surface turbulent fluxes of sensible and latent heat are often poorly prescribed for LESs. We derive these quantities from measurements and reanalysis obtained for two cold-air outbreak (CAO) events during Phase I of the Aerosol Cloud Meteorology Interactions over the Western Atlantic Experiment (ACTIVATE) in February–March 2020. We study the two contrasting CAO cases by performing LES and test the sensitivity of BL structure and clouds to large-scale forcings and turbulent heat fluxes. Profiles of atmospheric state and large-scale divergence and surface turbulent heat fluxes obtained from ERA5 data agree reasonably well with those derived from ACTIVATE field measurements for both cases at the sampling time and location. Therefore, we adopt the time-evolving heat fluxes, wind, and advective tendencies profiles from ERA5 data to drive the LES. We find that large-scale thermodynamic advective tendencies and wind relaxations are important for the LES to capture the evolving observed BL meteorological states characterized by the hourly ERA5 data and validated by the observations. We show that the divergence (or vertical velocity) is important in regulating the BL growth driven by surface heat fluxes in LESs. The evolution of liquid water path is largely affected by the evolution of surface heat fluxes. The liquid water path simulated in LES agrees reasonably well with the ACTIVATE measurements. This study paves the path to investigate aerosol–cloud–meteorology interactions using LES informed and evaluated by ACTIVATE field measurements.

Full access
Xiang-Yu Li
,
Hailong Wang
,
Jingyi Chen
,
Satoshi Endo
,
Simon Kirschler
,
Christiane Voigt
,
Ewan Crosbie
,
Luke D. Ziemba
,
David Painemal
,
Brian Cairns
,
Johnathan W. Hair
,
Andrea F. Corral
,
Claire Robinson
,
Hossein Dadashazar
,
Armin Sorooshian
,
Gao Chen
,
Richard Anthony Ferrare
,
Mary M. Kleb
,
Hongyu Liu
,
Richard Moore
,
Amy Jo Scarino
,
Michael A. Shook
,
Taylor J. Shingler
,
Kenneth Lee Thornhill
,
Florian Tornow
,
Heng Xiao
, and
Xubin Zeng

Abstract

Aerosol effects on micro/macrophysical properties of marine stratocumulus clouds over the western North Atlantic Ocean (WNAO) are investigated using in situ measurements and large-eddy simulations (LES) for two cold-air outbreak (CAO) cases (28 February and 1 March 2020) during the Aerosol Cloud Meteorology Interactions over the Western Atlantic Experiment (ACTIVATE). The LES is able to reproduce the vertical profiles of liquid water content (LWC), effective radius r eff and cloud droplet number concentration Nc from fast cloud droplet probe (FCDP) in situ measurements for both cases. Furthermore, we show that aerosols affect cloud properties (Nc , r eff, and LWC) via the prescribed bulk hygroscopicity of aerosols ( κ ¯ ) and aerosol size distribution characteristics. Nc , r eff, and liquid water path (LWP) are positively correlated to κ ¯ and aerosol number concentration (Na ) while cloud fractional cover (CFC) is insensitive to κ ¯ and aerosol size distributions for the two cases. The realistic changes to aerosol size distribution (number concentration, width, and the geometrical diameter) with the same meteorology state allow us to investigate aerosol effects on cloud properties without meteorological feedback. We also use the LES results to evaluate cloud properties from two reanalysis products, ERA5 and MERRA-2. Compared to LES, the ERA5 is able to capture the time evolution of LWP and total cloud coverage within the study domain during both CAO cases while MERRA-2 underestimates them.

Open access