Search Results

You are looking at 31 - 35 of 35 items for

  • Author or Editor: Xiaosong Yang x
  • Refine by Access: All Content x
Clear All Modify Search
Liwei Jia
,
Xiaosong Yang
,
Gabriel A. Vecchi
,
Richard G. Gudgel
,
Thomas L. Delworth
,
Anthony Rosati
,
William F. Stern
,
Andrew T. Wittenberg
,
Lakshmi Krishnamurthy
,
Shaoqing Zhang
,
Rym Msadek
,
Sarah Kapnick
,
Seth Underwood
,
Fanrong Zeng
,
Whit G. Anderson
,
Venkatramani Balaji
, and
Keith Dixon

Abstract

This study demonstrates skillful seasonal prediction of 2-m air temperature and precipitation over land in a new high-resolution climate model developed by the Geophysical Fluid Dynamics Laboratory and explores the possible sources of the skill. The authors employ a statistical optimization approach to identify the most predictable components of seasonal mean temperature and precipitation over land and demonstrate the predictive skill of these components. First, the improved skill of the high-resolution model over the previous lower-resolution model in seasonal prediction of the Niño-3.4 index and other aspects of interest is shown. Then, the skill of temperature and precipitation in the high-resolution model for boreal winter and summer is measured, and the sources of the skill are diagnosed. Last, predictions are reconstructed using a few of the most predictable components to yield more skillful predictions than the raw model predictions. Over three decades of hindcasts, the two most predictable components of temperature are characterized by a component that is likely due to changes in external radiative forcing in boreal winter and summer and an ENSO-related pattern in boreal winter. The most predictable components of precipitation in both seasons are very likely ENSO-related. These components of temperature and precipitation can be predicted with significant correlation skill at least 9 months in advance. The reconstructed predictions using only the first few predictable components from the model show considerably better skill relative to observations than raw model predictions. This study shows that the use of refined statistical analysis and a high-resolution dynamical model leads to significant skill in seasonal predictions of 2-m air temperature and precipitation over land.

Full access
Xiaosong Yang
,
Gabriel A. Vecchi
,
Rich G. Gudgel
,
Thomas L. Delworth
,
Shaoqing Zhang
,
Anthony Rosati
,
Liwei Jia
,
William F. Stern
,
Andrew T. Wittenberg
,
Sarah Kapnick
,
Rym Msadek
,
Seth D. Underwood
,
Fanrong Zeng
,
Whit Anderson
, and
Venkatramani Balaji

Abstract

The seasonal predictability of extratropical storm tracks in the Geophysical Fluid Dynamics Laboratory’s (GFDL)’s high-resolution climate model has been investigated using an average predictability time analysis. The leading predictable components of extratropical storm tracks are the ENSO-related spatial patterns for both boreal winter and summer, and the second predictable components are mostly due to changes in external radiative forcing and multidecadal oceanic variability. These two predictable components for both seasons show significant correlation skill for all leads from 0 to 9 months, while the skill of predicting the boreal winter storm track is consistently higher than that of the austral winter. The predictable components of extratropical storm tracks are dynamically consistent with the predictable components of the upper troposphere jet flow for both seasons. Over the region with strong storm-track signals in North America, the model is able to predict the changes in statistics of extremes connected to storm-track changes (e.g., extreme low and high sea level pressure and extreme 2-m air temperature) in response to different ENSO phases. These results point toward the possibility of providing skillful seasonal predictions of the statistics of extratropical extremes over land using high-resolution coupled models.

Full access
Baoqiang Xiang
,
Lucas Harris
,
Thomas L. Delworth
,
Bin Wang
,
Guosen Chen
,
Jan-Huey Chen
,
Spencer K. Clark
,
William F. Cooke
,
Kun Gao
,
J. Jacob Huff
,
Liwei Jia
,
Nathaniel C. Johnson
,
Sarah B. Kapnick
,
Feiyu Lu
,
Colleen McHugh
,
Yongqiang Sun
,
Mingjing Tong
,
Xiaosong Yang
,
Fanrong Zeng
,
Ming Zhao
,
Linjiong Zhou
, and
Xiaqiong Zhou

Abstract

A subseasonal-to-seasonal (S2S) prediction system was recently developed using the GFDL Seamless System for Prediction and Earth System Research (SPEAR) global coupled model. Based on 20-yr hindcast results (2000–19), the boreal wintertime (November–April) Madden–Julian oscillation (MJO) prediction skill is revealed to reach 30 days measured before the anomaly correlation coefficient of the real-time multivariate (RMM) index drops to 0.5. However, when the MJO is partitioned into four distinct propagation patterns, the prediction range extends to 38, 31, and 31 days for the fast-propagating, slow-propagating, and jumping MJO patterns, respectively, but falls to 23 days for the standing MJO. A further improvement of MJO prediction requires attention to the standing MJO given its large gap with its potential predictability (38 days). The slow-propagating MJO detours southward when traversing the Maritime Continent (MC), and confronts the MC prediction barrier in the model, while the fast-propagating MJO moves across the central MC without this prediction barrier. The MJO diversity is modulated by stratospheric quasi-biennial oscillation (QBO): the standing (slow-propagating) MJO coincides with significant westerly (easterly) phases of QBO, partially explaining the contrasting MJO prediction skill between these two QBO phases. The SPEAR model shows its capability, beyond the propagation, in predicting their initiation for different types of MJO along with discrete precursory convection anomalies. The SPEAR model skillfully predicts the observed distinct teleconnections over the North Pacific and North America related to the standing, jumping, and fast-propagating MJO, but not the slow-propagating MJO. These findings highlight the complexities and challenges of incorporating MJO prediction into the operational prediction of meteorological variables.

Full access
Mitchell Bushuk
,
Michael Winton
,
F. Alexander Haumann
,
Thomas Delworth
,
Feiyu Lu
,
Yongfei Zhang
,
Liwei Jia
,
Liping Zhang
,
William Cooke
,
Matthew Harrison
,
Bill Hurlin
,
Nathaniel C. Johnson
,
Sarah B. Kapnick
,
Colleen McHugh
,
Hiroyuki Murakami
,
Anthony Rosati
,
Kai-Chih Tseng
,
Andrew T. Wittenberg
,
Xiaosong Yang
, and
Fanrong Zeng

Abstract

Compared to the Arctic, seasonal predictions of Antarctic sea ice have received relatively little attention. In this work, we utilize three coupled dynamical prediction systems developed at the Geophysical Fluid Dynamics Laboratory to assess the seasonal prediction skill and predictability of Antarctic sea ice. These systems, based on the FLOR, SPEAR_LO, and SPEAR_MED dynamical models, differ in their coupled model components, initialization techniques, atmospheric resolution, and model biases. Using suites of retrospective initialized seasonal predictions spanning 1992–2018, we investigate the role of these factors in determining Antarctic sea ice prediction skill and examine the mechanisms of regional sea ice predictability. We find that each system is capable of skillfully predicting regional Antarctic sea ice extent (SIE) with skill that exceeds a persistence forecast. Winter SIE is skillfully predicted 11 months in advance in the Weddell, Amundsen/Bellingshausen, Indian, and west Pacific sectors, whereas winter skill is notably lower in the Ross sector. Zonally advected upper-ocean heat content anomalies are found to provide the crucial source of prediction skill for the winter sea ice edge position. The recently developed SPEAR systems are more skillful than FLOR for summer sea ice predictions, owing to improvements in sea ice concentration and sea ice thickness initialization. Summer Weddell SIE is skillfully predicted up to 9 months in advance in SPEAR_MED, due to the persistence and drift of initialized sea ice thickness anomalies from the previous winter. Overall, these results suggest a promising potential for providing operational Antarctic sea ice predictions on seasonal time scales.

Open access
Leon Hermanson
,
Doug Smith
,
Melissa Seabrook
,
Roberto Bilbao
,
Francisco Doblas-Reyes
,
Etienne Tourigny
,
Vladimir Lapin
,
Viatcheslav V. Kharin
,
William J. Merryfield
,
Reinel Sospedra-Alfonso
,
Panos Athanasiadis
,
Dario Nicoli
,
Silvio Gualdi
,
Nick Dunstone
,
Rosie Eade
,
Adam Scaife
,
Mark Collier
,
Terence O’Kane
,
Vassili Kitsios
,
Paul Sandery
,
Klaus Pankatz
,
Barbara Früh
,
Holger Pohlmann
,
Wolfgang Müller
,
Takahito Kataoka
,
Hiroaki Tatebe
,
Masayoshi Ishii
,
Yukiko Imada
,
Tim Kruschke
,
Torben Koenigk
,
Mehdi Pasha Karami
,
Shuting Yang
,
Tian Tian
,
Liping Zhang
,
Tom Delworth
,
Xiaosong Yang
,
Fanrong Zeng
,
Yiguo Wang
,
François Counillon
,
Noel Keenlyside
,
Ingo Bethke
,
Judith Lean
,
Jürg Luterbacher
,
Rupa Kumar Kolli
, and
Arun Kumar

Abstract

As climate change accelerates, societies and climate-sensitive socioeconomic sectors cannot continue to rely on the past as a guide to possible future climate hazards. Operational decadal predictions offer the potential to inform current adaptation and increase resilience by filling the important gap between seasonal forecasts and climate projections. The World Meteorological Organization (WMO) has recognized this and in 2017 established the WMO Lead Centre for Annual to Decadal Climate Predictions (shortened to “Lead Centre” below), which annually provides a large multimodel ensemble of predictions covering the next 5 years. This international collaboration produces a prediction that is more skillful and useful than any single center can achieve. One of the main outputs of the Lead Centre is the Global Annual to Decadal Climate Update (GADCU), a consensus forecast based on these predictions. This update includes maps showing key variables, discussion on forecast skill, and predictions of climate indices such as the global mean near-surface temperature and Atlantic multidecadal variability. it also estimates the probability of the global mean temperature exceeding 1.5°C above preindustrial levels for at least 1 year in the next 5 years, which helps policy-makers understand how closely the world is approaching this goal of the Paris Agreement. This paper, written by the authors of the GADCU, introduces the GADCU, presents its key outputs, and briefly discusses its role in providing vital climate information for society now and in the future.

Full access