Search Results

You are looking at 41 - 43 of 43 items for :

  • Author or Editor: Adam J. Clark x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Burkely T. Gallo
,
Adam J. Clark
,
Israel Jirak
,
John S. Kain
,
Steven J. Weiss
,
Michael Coniglio
,
Kent Knopfmeier
,
James Correia Jr.
,
Christopher J. Melick
,
Christopher D. Karstens
,
Eswar Iyer
,
Andrew R. Dean
,
Ming Xue
,
Fanyou Kong
,
Youngsun Jung
,
Feifei Shen
,
Kevin W. Thomas
,
Keith Brewster
,
Derek Stratman
,
Gregory W. Carbin
,
William Line
,
Rebecca Adams-Selin
, and
Steve Willington

Abstract

Led by NOAA’s Storm Prediction Center and National Severe Storms Laboratory, annual spring forecasting experiments (SFEs) in the Hazardous Weather Testbed test and evaluate cutting-edge technologies and concepts for improving severe weather prediction through intensive real-time forecasting and evaluation activities. Experimental forecast guidance is provided through collaborations with several U.S. government and academic institutions, as well as the Met Office. The purpose of this article is to summarize activities, insights, and preliminary findings from recent SFEs, emphasizing SFE 2015. Several innovative aspects of recent experiments are discussed, including the 1) use of convection-allowing model (CAM) ensembles with advanced ensemble data assimilation, 2) generation of severe weather outlooks valid at time periods shorter than those issued operationally (e.g., 1–4 h), 3) use of CAMs to issue outlooks beyond the day 1 period, 4) increased interaction through software allowing participants to create individual severe weather outlooks, and 5) tests of newly developed storm-attribute-based diagnostics for predicting tornadoes and hail size. Additionally, plans for future experiments will be discussed, including the creation of a Community Leveraged Unified Ensemble (CLUE) system, which will test various strategies for CAM ensemble design using carefully designed sets of ensemble members contributed by different agencies to drive evidence-based decision-making for near-future operational systems.

Full access
Corey K. Potvin
,
Jacob R. Carley
,
Adam J. Clark
,
Louis J. Wicker
,
Patrick S. Skinner
,
Anthony E. Reinhart
,
Burkely T. Gallo
,
John S. Kain
,
Glen S. Romine
,
Eric A. Aligo
,
Keith A. Brewster
,
David C. Dowell
,
Lucas M. Harris
,
Israel L. Jirak
,
Fanyou Kong
,
Timothy A. Supinie
,
Kevin W. Thomas
,
Xuguang Wang
,
Yongming Wang
, and
Ming Xue

Abstract

The 2016–18 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiments (SFE) featured the Community Leveraged Unified Ensemble (CLUE), a coordinated convection-allowing model (CAM) ensemble framework designed to provide empirical guidance for development of operational CAM systems. The 2017 CLUE included 81 members that all used 3-km horizontal grid spacing over the CONUS, enabling direct comparison of forecasts generated using different dynamical cores, physics schemes, and initialization procedures. This study uses forecasts from several of the 2017 CLUE members and one operational model to evaluate and compare CAM representation and next-day prediction of thunderstorms. The analysis utilizes existing techniques and novel, object-based techniques that distill important information about modeled and observed storms from many cases. The National Severe Storms Laboratory Multi-Radar Multi-Sensor product suite is used to verify model forecasts and climatologies of observed variables. Unobserved model fields are also examined to further illuminate important intermodel differences in storms and near-storm environments. No single model performed better than the others in all respects. However, there were many systematic intermodel and intercore differences in specific forecast metrics and model fields. Some of these differences can be confidently attributed to particular differences in model design. Model intercomparison studies similar to the one presented here are important to better understand the impacts of model and ensemble configurations on storm forecasts and to help optimize future operational CAM systems.

Full access
Pamela L. Heinselman
,
Patrick C. Burke
,
Louis J. Wicker
,
Adam J. Clark
,
John S. Kain
,
Jidong Gao
,
Nusrat Yussouf
,
Thomas A. Jones
,
Patrick S. Skinner
,
Corey K. Potvin
,
Katie A. Wilson
,
Burkely T. Gallo
,
Montgomery L. Flora
,
Joshua Martin
,
Gerry Creager
,
Kent H. Knopfmeier
,
Yunheng Wang
,
Brian C. Matilla
,
David C. Dowell
,
Edward R. Mansell
,
Brett Roberts
,
Kimberly A. Hoogewind
,
Derek R. Stratman
,
Jorge Guerra
,
Anthony E. Reinhart
,
Christopher A. Kerr
, and
William Miller

Abstract

In 2009, advancements in NWP and computing power inspired a vision to advance hazardous weather warnings from a warn-on-detection to a warn-on-forecast paradigm. This vision would require not only the prediction of individual thunderstorms and their attributes but the likelihood of their occurrence in time and space. During the last decade, the warn-on-forecast research team at the NOAA National Severe Storms Laboratory met this challenge through the research and development of 1) an ensemble of high-resolution convection-allowing models; 2) ensemble- and variational-based assimilation of weather radar, satellite, and conventional observations; and 3) unique postprocessing and verification techniques, culminating in the experimental Warn-on-Forecast System (WoFS). Since 2017, we have directly engaged users in the testing, evaluation, and visualization of this system to ensure that WoFS guidance is usable and useful to operational forecasters at NOAA national centers and local offices responsible for forecasting severe weather, tornadoes, and flash floods across the watch-to-warning continuum. Although an experimental WoFS is now a reality, we close by discussing many of the exciting opportunities remaining, including folding this system into the Unified Forecast System, transitioning WoFS into NWS operations, and pursuing next-decade science goals for further advancing storm-scale prediction.

Significance Statement

The purpose of this research is to develop an experimental prediction system that forecasts the probability for severe weather hazards associated with individual thunderstorms up to 6 h in advance. This capability is important because some people and organizations, like those living in mobile homes, caring for patients in hospitals, or managing large outdoor events, require extended lead time to protect themselves and others from potential severe weather hazards. Our results demonstrate a prediction system that enables forecasters, for the first time, to message probabilistic hazard information associated with individual severe storms between the watch-to-warning time frame within the United States.

Open access