Search Results

You are looking at 41 - 50 of 53 items for

  • Author or Editor: Christian Jakob x
  • Refine by Access: All Content x
Clear All Modify Search
Shaocheng Xie
,
Timothy Hume
,
Christian Jakob
,
Stephen A. Klein
,
Renata B. McCoy
, and
Minghua Zhang

Abstract

This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence and horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. The diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.

Full access
Min-Seop Ahn
,
Peter J. Gleckler
,
Jiwoo Lee
,
Angeline G. Pendergrass
, and
Christian Jakob

Abstract

Objective performance metrics that measure precipitation variability across time scales from subdaily to interannual are presented and applied to Historical simulations of Coupled Model Intercomparison Project phase 5 and 6 (CMIP5 and CMIP6) models. Three satellite-based precipitation estimates (IMERG, TRMM, and CMORPH) are used as reference data. We apply two independent methods to estimate temporal variability of precipitation and compare the consistency in their results. The first method is derived from power spectra analysis of 3-hourly precipitation, measuring forced variability by solar insolation (diurnal and annual cycles) and internal variability at different time scales (subdaily, synoptic, subseasonal, seasonal, and interannual). The second method is based on time averaging and facilitates estimating the seasonality of subdaily variability. Supporting the robustness of our metric, we find a near equivalence between the results obtained from the two methods when examining simulated-to-observed ratios over large domains (global, tropics, extratropics, land, or ocean). Additionally, we demonstrate that our model evaluation is not very sensitive to the discrepancies between observations. Our results reveal that CMIP5 and CMIP6 models in general overestimate the forced variability while they underestimate the internal variability, especially in the tropical ocean and higher-frequency variability. The underestimation of subdaily variability is consistent across different seasons. The internal variability is overall improved in CMIP6, but remains underestimated, and there is little evidence of improvement in forced variability. Increased horizontal resolution results in some improvement of internal variability at subdaily and synoptic time scales, but not at longer time scales.

Free access
Angeline G. Pendergrass
,
Peter J. Gleckler
,
L. Ruby Leung
, and
Christian Jakob
Free access
Kathrin Wapler
,
Todd P. Lane
,
Peter T. May
,
Christian Jakob
,
Michael J. Manton
, and
Steven T. Siems

Abstract

Nested cloud-system-resolving model simulations of tropical convective clouds observed during the recent Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are conducted using the Weather Research and Forecasting (WRF) model. The WRF model is configured with a highest-resolving domain that uses 1.3-km grid spacing and is centered over Darwin, Australia. The performance of the model in simulating two different convective regimes observed during TWP-ICE is considered. The first regime is characteristic of the active monsoon, which features widespread cloud cover that is similar to maritime convection. The second regime is a monsoon break, which contains intense localized systems that are representative of diurnally forced continental convection. Many aspects of the model performance are considered, including their sensitivity to physical parameterizations and initialization time, and the spatial statistics of rainfall accumulations and the rain-rate distribution. While the simulations highlight many challenges and difficulties in correctly modeling the convection in the two regimes, they show that provided the mesoscale environment is adequately reproduced by the model, the statistics of the simulated rainfall agrees reasonably well with the observations.

Full access
Simon Caine
,
Todd P. Lane
,
Peter T. May
,
Christian Jakob
,
Steven T. Siems
,
Michael J. Manton
, and
James Pinto

Abstract

This study presents a method for comparing convection-permitting model simulations to radar observations using an innovative object-based approach. The method uses the automated cell-tracking algorithm, Thunderstorm Identification Tracking Analysis and Nowcasting (TITAN), to identify individual convective cells and determine their properties. Cell properties are identified in the same way for model and radar data, facilitating comparison of their statistical distributions. The method is applied to simulations of tropical convection during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) using the Weather Research and Forecasting Model, and compared to data from a ground-based radar. Simulations with different microphysics and model resolution are also conducted. Among other things, the comparisons between the model and the radar elucidate model errors in the depth and size of convective cells. On average, simulated convective cells reached higher altitudes than the observations. Also, when using a low reflectivity (25 dBZ) threshold to define convective cells, the model underestimates the size of the largest cells in the observed population. Some of these differences are alleviated with a change of microphysics scheme and higher model resolution, demonstrating the utility of this method for assessing model changes.

Full access
Vickal V. Kumar
,
Alain Protat
,
Peter T. May
,
Christian Jakob
,
Guillaume Penide
,
Sushil Kumar
, and
Laura Davies

Abstract

Two seasons of Darwin, Australia, C-band polarimetric (CPOL) research radar, radiosoundings, and lightning data are examined to study the relative influence of the large-scale atmospheric regimes and the underlying surface types on tropical convective cloud properties and their diurnal evolution. The authors find that in the “deep westerly” regime, which corresponds to the monsoon period, the convective cloud occurrence rate is highest, consistent with its highest relative humidity. However, these convective clouds have relatively low cloud-top heights, smaller-than-average cell volumes, and are electrically least active. In this regime, the cloud cell volume does not vary significantly across different underlying surfaces and afternoon convective activity is suppressed. Thus, the picture emerging is that the convective cloud activity in the deep westerly regime is primarily regulated by the large-scale conditions. The remaining regimes (“easterly,” “shallow westerly,” and “moist easterly”) also demonstrate strong dependence on the large-scale forcing and a secondary dependence on the underlying surface type. The easterly regime has a small convective cloud occurrence rate and low cloud heights but higher lightning counts per convective cloud. The other two regimes have moderate convective cloud occurrence rates and larger cloud sizes. The easterly, shallow westerly, and moist easterly regimes exhibit a strong, clearly defined semidiurnal convective cloud occurrence pattern, with peaks in the early morning and afternoon periods. The cell onset times in these three regimes depend on the combination of local time and the underlying surface.

Full access
Vickal V. Kumar
,
Alain Protat
,
Christian Jakob
,
Christopher R. Williams
,
Surendra Rauniyar
,
Graeme L. Stephens
, and
Peter T. May

Abstract

Cumulus parameterizations in general circulation models (GCMs) frequently apply mass-flux schemes in their description of tropical convection. Mass flux constitutes the product of the fractional area covered by cumulus clouds in a model grid box and the vertical velocity within the cumulus clouds. The cumulus area fraction profiles can be derived from precipitating radar reflectivity volumes. However, the vertical velocities are difficult to observe, making the evaluation of mass-flux schemes difficult. In this paper, the authors develop and evaluate a parameterization of vertical velocity in convective (cumulus) clouds using only radar reflectivities collected by a C-band polarimetric research radar (CPOL), operating at Darwin, Australia. The parameterization is trained using vertical velocity retrievals from a dual-frequency wind profiler pair located within the field of view of CPOL. The parametric model uses two inputs derived from CPOL reflectivities: the 0-dBZ echo-top height (0-dBZ ETH) and a height-weighted column reflectivity index (Z HWT). The 0-dBZ ETH determines the shape of the vertical velocity profile, while Z HWT determines its strength. The evaluation of these parameterized vertical velocities using (i) the training dataset, (ii) an independent wind-profiler-based dataset, and (iii) 1 month of dual-Doppler vertical velocity retrievals indicates that the statistical representation of vertical velocity is reasonably accurate up to the 75th percentile. However, the parametric model underestimates the extreme velocities. The method allows for the derivation of cumulus mass flux and its variability on current GCM scales based only on reflectivities from precipitating radar, which could be valuable to modelers.

Full access
Valentin Louf
,
Alain Protat
,
Robert A. Warren
,
Scott M. Collis
,
David B. Wolff
,
Surendra Raunyiar
,
Christian Jakob
, and
Walter A. Petersen

Abstract

The stability and accuracy of weather radar reflectivity calibration are imperative for quantitative applications, such as rainfall estimation, severe weather monitoring and nowcasting, and assimilation in numerical weather prediction models. Various radar calibration and monitoring techniques have been developed, but only recently have integrated approaches been proposed, that is, using different calibration techniques in combination. In this paper the following three techniques are used: 1) ground clutter monitoring, 2) comparisons with spaceborne radars, and 3) the self-consistency of polarimetric variables. These techniques are applied to a C-band polarimetric radar (CPOL) located in the Australian tropics since 1998. The ground clutter monitoring technique is applied to each radar volumetric scan and provides a means to reliably detect changes in calibration, relative to a baseline. It is remarkably stable to within a standard deviation of 0.1 dB. To obtain an absolute calibration value, CPOL observations are compared to spaceborne radars on board TRMM and GPM using a volume-matching technique. Using an iterative procedure and stable calibration periods identified by the ground echoes technique, we improve the accuracy of this technique to about 1 dB. Finally, we review the self-consistency technique and constrain its assumptions using results from the hybrid TRMM–GPM and ground echo technique. Small changes in the self-consistency parameterization can lead to 5 dB of variation in the reflectivity calibration. We find that the drop-shape model of Brandes et al. with a standard deviation of the canting angle of 12° best matches our dataset.

Full access
Peter T. May
,
James H. Mather
,
Geraint Vaughan
,
Christian Jakob
,
Greg M. McFarquhar
,
Keith N. Bower
, and
Gerald G. Mace

A comprehensive dataset describing tropical cloud systems and their environmental setting and impacts has been collected during the Tropical Warm Pool International Cloud Experiment (TWPICE) and Aerosol and Chemical Transport in Tropical Convection (ACTIVE) campaign in the area around Darwin, Northern Australia, in January and February 2006. The aim of the experiment was to observe the evolution of tropical cloud systems and their interaction with the environment within an observational framework optimized for a range of modeling activities with the goal of improving the representation of cloud and aerosol process in a range of models. The experiment design utilized permanent observational facilities in Darwin, including a polarimetric weather radar and a suite of cloud remote-sensing instruments. This was augmented by a dense network of soundings, together with radiation, flux, lightning, and remote-sensing measurements, as well as oceanographic observations. A fleet of five research aircraft, including two high-altitude aircraft, were taking measurements of fluxes, cloud microphysics, and chemistry; cloud radar and lidar were carried on a third aircraft. Highlights of the experiment include an intense mesoscale convective system (MCS) developed within the network, observations used to analyze the impacts of aerosol on convective systems, and observations used to relate cirrus properties to the parent storm properties.

Full access
Peter T. May
,
James H. Mather
,
Geraint Vaughan
,
Keith N. Bower
,
Christian Jakob
,
Greg M. McFarquhar
, and
Gerald G. Mace
Full access