Search Results
You are looking at 41 - 50 of 81 items for
- Author or Editor: F. Chen x
- Refine by Access: All Content x
Abstract
Over the course of his career, Fuqing Zhang drew vital new insights into the dynamics of meteorologically significant mesoscale gravity waves (MGWs), including their generation by unbalanced jet streaks, their interaction with fronts and organized precipitation, and their importance in midlatitude weather and predictability. Zhang was the first to deeply examine “spontaneous balance adjustment”—the process by which MGWs are continuously emitted as baroclinic growth drives the upper-level flow out of balance. Through his pioneering numerical model investigation of the large-amplitude MGW event of 4 January 1994, he additionally demonstrated the critical role of MGW–moist convection interaction in wave amplification. Zhang’s curiosity-turned-passion in atmospheric science covered a vast range of topics and led to the birth of new branches of research in mesoscale meteorology and numerical weather prediction. Yet, it was his earliest studies into midlatitude MGWs and their significant impacts on hazardous weather that first inspired him. Such MGWs serve as the focus of this review, wherein we seek to pay tribute to his groundbreaking contributions, review our current understanding, and highlight critical open science issues. Chief among such issues is the nature of MGW amplification through feedback with moist convection, which continues to elude a complete understanding. The pressing nature of this subject is underscored by the continued failure of operational numerical forecast models to adequately predict most large-amplitude MGW events. Further research into such issues therefore presents a valuable opportunity to improve the understanding and forecasting of this high-impact weather phenomenon, and in turn, to preserve the spirit of Zhang’s dedication to this subject.
Abstract
Over the course of his career, Fuqing Zhang drew vital new insights into the dynamics of meteorologically significant mesoscale gravity waves (MGWs), including their generation by unbalanced jet streaks, their interaction with fronts and organized precipitation, and their importance in midlatitude weather and predictability. Zhang was the first to deeply examine “spontaneous balance adjustment”—the process by which MGWs are continuously emitted as baroclinic growth drives the upper-level flow out of balance. Through his pioneering numerical model investigation of the large-amplitude MGW event of 4 January 1994, he additionally demonstrated the critical role of MGW–moist convection interaction in wave amplification. Zhang’s curiosity-turned-passion in atmospheric science covered a vast range of topics and led to the birth of new branches of research in mesoscale meteorology and numerical weather prediction. Yet, it was his earliest studies into midlatitude MGWs and their significant impacts on hazardous weather that first inspired him. Such MGWs serve as the focus of this review, wherein we seek to pay tribute to his groundbreaking contributions, review our current understanding, and highlight critical open science issues. Chief among such issues is the nature of MGW amplification through feedback with moist convection, which continues to elude a complete understanding. The pressing nature of this subject is underscored by the continued failure of operational numerical forecast models to adequately predict most large-amplitude MGW events. Further research into such issues therefore presents a valuable opportunity to improve the understanding and forecasting of this high-impact weather phenomenon, and in turn, to preserve the spirit of Zhang’s dedication to this subject.
Abstract
Cloud vertical profile measurements from the CALIPSO and CloudSat active sensors are used to improve top-of-atmosphere (TOA) shortwave (SW) broadband (BB) irradiance computations. The active sensor measurements, which occasionally miss parts of the cloud columns because of the full attenuation of sensor signals, surface clutter, or insensitivity to a certain range of cloud particle sizes, are adjusted using column-integrated cloud optical depth derived from the passive MODIS sensor. Specifically, we consider two steps in generating cloud profiles from multiple sensors for irradiance computations. First, cloud extinction coefficient and cloud effective radius (CER) profiles are merged using available active and passive measurements. Second, the merged cloud extinction profiles are constrained by the MODIS visible scaled cloud optical depth, defined as a visible cloud optical depth multiplied by (1 − asymmetry parameter), to compensate for missing cloud parts by active sensors. It is shown that the multisensor-combined cloud profiles significantly reduce positive TOA SW BB biases, relative to those with MODIS-derived cloud properties only. The improvement is more pronounced for optically thick clouds, where MODIS ice CER is largely underestimated. Within the SW BB (0.18–4 μm), the 1.04–1.90-μm spectral region is mainly affected by the CER, where both the cloud absorption and solar incoming irradiance are considerable.
Significance Statement
The purpose of this study is to improve shortwave irradiance computations at the top of the atmosphere by using combined cloud properties from active and passive sensor measurements. Relative to the simulation results with passive sensor cloud measurements only, the combined cloud profiles provide more accurate shortwave simulation results. This is achieved by more realistic profiles of cloud extinction coefficient and cloud particle effective radius. The benefit is pronounced for optically thick clouds composed of large ice particles.
Abstract
Cloud vertical profile measurements from the CALIPSO and CloudSat active sensors are used to improve top-of-atmosphere (TOA) shortwave (SW) broadband (BB) irradiance computations. The active sensor measurements, which occasionally miss parts of the cloud columns because of the full attenuation of sensor signals, surface clutter, or insensitivity to a certain range of cloud particle sizes, are adjusted using column-integrated cloud optical depth derived from the passive MODIS sensor. Specifically, we consider two steps in generating cloud profiles from multiple sensors for irradiance computations. First, cloud extinction coefficient and cloud effective radius (CER) profiles are merged using available active and passive measurements. Second, the merged cloud extinction profiles are constrained by the MODIS visible scaled cloud optical depth, defined as a visible cloud optical depth multiplied by (1 − asymmetry parameter), to compensate for missing cloud parts by active sensors. It is shown that the multisensor-combined cloud profiles significantly reduce positive TOA SW BB biases, relative to those with MODIS-derived cloud properties only. The improvement is more pronounced for optically thick clouds, where MODIS ice CER is largely underestimated. Within the SW BB (0.18–4 μm), the 1.04–1.90-μm spectral region is mainly affected by the CER, where both the cloud absorption and solar incoming irradiance are considerable.
Significance Statement
The purpose of this study is to improve shortwave irradiance computations at the top of the atmosphere by using combined cloud properties from active and passive sensor measurements. Relative to the simulation results with passive sensor cloud measurements only, the combined cloud profiles provide more accurate shortwave simulation results. This is achieved by more realistic profiles of cloud extinction coefficient and cloud particle effective radius. The benefit is pronounced for optically thick clouds composed of large ice particles.
Abstract
The Pearl River Delta (PRD) region, located in the southern part of Guangdong Province in China, is one of the most rapidly developing regions in the world. The evolution of local and regional sea-breeze circulation (SBC) is believed to be responsible for forming meteorological conditions for high air-pollution episodes in the PRD. To understand better the impacts of urbanization and its associated urban heat island (UHI) on the local- and regional-scale atmospheric circulations over PRD, a number of high-resolution numerical experiments, with different approaches to treat the land surface and urban processes, have been conducted using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). The results show that an accurate urban land-use dataset and a proper urban land-use parameterization are critical for the mesoscale model to capture the major features of the observed UHI effect and land–sea-breeze circulations in the PRD. Stronger UHI in the PRD increases the differential temperature gradient between urbanized areas and nearby ocean surface and hence enhances the mesoscale SBC. The SBC front consequently penetrates farther inland to overcome the prevailing easterly flow in the western part of inland Hong Kong. Additional sensitivity studies indicate that further industrial development and urbanization will strengthen the daytime SBC as well as increase the air temperature in the lowest 2 km of the atmosphere.
Abstract
The Pearl River Delta (PRD) region, located in the southern part of Guangdong Province in China, is one of the most rapidly developing regions in the world. The evolution of local and regional sea-breeze circulation (SBC) is believed to be responsible for forming meteorological conditions for high air-pollution episodes in the PRD. To understand better the impacts of urbanization and its associated urban heat island (UHI) on the local- and regional-scale atmospheric circulations over PRD, a number of high-resolution numerical experiments, with different approaches to treat the land surface and urban processes, have been conducted using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). The results show that an accurate urban land-use dataset and a proper urban land-use parameterization are critical for the mesoscale model to capture the major features of the observed UHI effect and land–sea-breeze circulations in the PRD. Stronger UHI in the PRD increases the differential temperature gradient between urbanized areas and nearby ocean surface and hence enhances the mesoscale SBC. The SBC front consequently penetrates farther inland to overcome the prevailing easterly flow in the western part of inland Hong Kong. Additional sensitivity studies indicate that further industrial development and urbanization will strengthen the daytime SBC as well as increase the air temperature in the lowest 2 km of the atmosphere.
Current human-induced warming has led to approximately a 30-fold increase in the occurrence probability of 2021 northwestern Pacific concurrent marine and terrestrial summer heat.
Current human-induced warming has led to approximately a 30-fold increase in the occurrence probability of 2021 northwestern Pacific concurrent marine and terrestrial summer heat.
Abstract
Drought projections are accompanied with large uncertainties due to varying estimates of future warming scenarios from different modeling and forcing data. Using the standardized precipitation index (SPI), this study presents a global assessment of uncertainties in drought characteristics (severity S and frequency Df) projections based on the simulations of 28 general circulation models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). A hierarchical framework incorporating a variance-based global sensitivity analysis was developed to quantify the uncertainties in drought characteristics projections at various spatial (global and regional) and temporal (decadal and 30-yr) scales due to 28 GCMs, three representative concentration pathway scenarios (RCP2.6, RCP4.5, RCP8.5), and two bias-correction (BC) methods. The results indicated that the largest uncertainty contribution in the globally projected S and Df is from the GCM uncertainty (>60%), followed by BC (<35%) and RCP (<16%) uncertainty. Spatially, BC reduces the spreads among GCMs particularly in Northern Hemisphere (NH), leading to smaller GCM uncertainty in the NH than the Southern Hemisphere (SH). In contrast, the BC and RCP uncertainties are larger in the NH than the SH, and the BC uncertainty can be larger than GCM uncertainty for some regions (e.g., southwest Asia). At the decadal and 30-yr time scales, the contributions for three uncertainty sources show larger variability in S than Df projections, especially in the SH. The GCM and BC uncertainties show overall decreasing trends with time, while the RCP uncertainty is expected to increase over time and even can be larger than BC uncertainty for some regions (e.g., northern Asia) by the end of this century.
Abstract
Drought projections are accompanied with large uncertainties due to varying estimates of future warming scenarios from different modeling and forcing data. Using the standardized precipitation index (SPI), this study presents a global assessment of uncertainties in drought characteristics (severity S and frequency Df) projections based on the simulations of 28 general circulation models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). A hierarchical framework incorporating a variance-based global sensitivity analysis was developed to quantify the uncertainties in drought characteristics projections at various spatial (global and regional) and temporal (decadal and 30-yr) scales due to 28 GCMs, three representative concentration pathway scenarios (RCP2.6, RCP4.5, RCP8.5), and two bias-correction (BC) methods. The results indicated that the largest uncertainty contribution in the globally projected S and Df is from the GCM uncertainty (>60%), followed by BC (<35%) and RCP (<16%) uncertainty. Spatially, BC reduces the spreads among GCMs particularly in Northern Hemisphere (NH), leading to smaller GCM uncertainty in the NH than the Southern Hemisphere (SH). In contrast, the BC and RCP uncertainties are larger in the NH than the SH, and the BC uncertainty can be larger than GCM uncertainty for some regions (e.g., southwest Asia). At the decadal and 30-yr time scales, the contributions for three uncertainty sources show larger variability in S than Df projections, especially in the SH. The GCM and BC uncertainties show overall decreasing trends with time, while the RCP uncertainty is expected to increase over time and even can be larger than BC uncertainty for some regions (e.g., northern Asia) by the end of this century.
Abstract
This study investigates the precipitation symmetrization preceding rapid intensification (RI) of tropical cyclones (TCs) experiencing vertical wind shear by analyzing numerical simulations of Typhoon Mujigae (2015) with warm (CTL) and relatively cool (S1) sea surface temperatures (SSTs). A novel finding is that precipitation symmetrization is maintained by the continuous development of deep convection along the inward flank of a convective precipitation shield (CPS), especially in the downwind part. Beneath the CPS, downdrafts flush the boundary layer with low-entropy parcels. These low-entropy parcels do not necessarily weaken the TCs; instead, they are “recycled” in the TC circulation, gradually recovered by positive enthalpy fluxes, and develop into convection during their propagation toward a downshear convergence zone. Along-trajectory vertical momentum budget analyses reveal the predominant role of buoyancy acceleration in the convective development in both experiments. The boundary layer recovery is more efficient for warmer SST, and the stronger buoyancy acceleration accounts for the higher probability of these parcels developing into deep convection in the downwind part of the CPS, which helps maintain the precipitation symmetrization in CTL. In contrast, less efficient boundary layer recovery and less upshear deep convection hinder the precipitation symmetrization in S1. These findings highlight the key role of boundary layer recovery in regulating the precipitation symmetrization and upshear deep convection, which further accounts for an earlier RI onset timing of the CTL TC. The inward-rebuilding pathway also illuminates why deep convection is preferentially located inside the radius of maximum wind of sheared TCs undergoing RI.
Abstract
This study investigates the precipitation symmetrization preceding rapid intensification (RI) of tropical cyclones (TCs) experiencing vertical wind shear by analyzing numerical simulations of Typhoon Mujigae (2015) with warm (CTL) and relatively cool (S1) sea surface temperatures (SSTs). A novel finding is that precipitation symmetrization is maintained by the continuous development of deep convection along the inward flank of a convective precipitation shield (CPS), especially in the downwind part. Beneath the CPS, downdrafts flush the boundary layer with low-entropy parcels. These low-entropy parcels do not necessarily weaken the TCs; instead, they are “recycled” in the TC circulation, gradually recovered by positive enthalpy fluxes, and develop into convection during their propagation toward a downshear convergence zone. Along-trajectory vertical momentum budget analyses reveal the predominant role of buoyancy acceleration in the convective development in both experiments. The boundary layer recovery is more efficient for warmer SST, and the stronger buoyancy acceleration accounts for the higher probability of these parcels developing into deep convection in the downwind part of the CPS, which helps maintain the precipitation symmetrization in CTL. In contrast, less efficient boundary layer recovery and less upshear deep convection hinder the precipitation symmetrization in S1. These findings highlight the key role of boundary layer recovery in regulating the precipitation symmetrization and upshear deep convection, which further accounts for an earlier RI onset timing of the CTL TC. The inward-rebuilding pathway also illuminates why deep convection is preferentially located inside the radius of maximum wind of sheared TCs undergoing RI.
Abstract
Satellite-based precipitation estimates (SPEs) are generally validated using ground-based rain gauge or radar observations. However, in poorly instrumented regions, uncertainty in these references can lead to biased assessments of SPE accuracy. As a result, at regional or continental scales, an objective basis to evaluate SPEs is currently lacking. Here, we evaluate the potential for large-scale, spatially continuous evaluation of SPEs over land via the application of collocation-based techniques [i.e., triple collocation (TC) and quadruple collocation (QC) analyses]. Our collocation approach leverages the Soil Moisture to Rain (SM2RAIN) rainfall product, derived from the time series analysis of satellite-based soil moisture retrievals, in combination with independent rainfall datasets acquired from ground observations and climate reanalysis to validate four years of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) H23 daily rainfall product. Large-scale maps of the H23 correlation metric are generated using both TC and QC analyses. Results demonstrate that the SM2RAIN product is a uniquely valuable independent product for collocation analyses, because other available large-scale rainfall datasets are often based on overlapping data sources and algorithms. In particular, the availability of SM2RAIN facilitates the large-scale evaluation of SPE products like H23—even in areas that lack adequate ground-based observations to apply traditional validation approaches.
Abstract
Satellite-based precipitation estimates (SPEs) are generally validated using ground-based rain gauge or radar observations. However, in poorly instrumented regions, uncertainty in these references can lead to biased assessments of SPE accuracy. As a result, at regional or continental scales, an objective basis to evaluate SPEs is currently lacking. Here, we evaluate the potential for large-scale, spatially continuous evaluation of SPEs over land via the application of collocation-based techniques [i.e., triple collocation (TC) and quadruple collocation (QC) analyses]. Our collocation approach leverages the Soil Moisture to Rain (SM2RAIN) rainfall product, derived from the time series analysis of satellite-based soil moisture retrievals, in combination with independent rainfall datasets acquired from ground observations and climate reanalysis to validate four years of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) H23 daily rainfall product. Large-scale maps of the H23 correlation metric are generated using both TC and QC analyses. Results demonstrate that the SM2RAIN product is a uniquely valuable independent product for collocation analyses, because other available large-scale rainfall datasets are often based on overlapping data sources and algorithms. In particular, the availability of SM2RAIN facilitates the large-scale evaluation of SPE products like H23—even in areas that lack adequate ground-based observations to apply traditional validation approaches.
Abstract
Precipitation data are known to be the key driver of hydrological simulations. Hence, reliable quantitative precipitation estimates and forecasts are vital for accurate hydrological forecasting. Satellite-based precipitation estimates from Integrated Multi-satellitE Retrievals for GPM Early Run (IMERG-E) and forecasted precipitation from NASA’s Goddard Earth Observing System Forward Processing (GEOS-FP) have shown values in global flood nowcasting and forecasting. However, few studies have comprehensively evaluated their hydrological performance let alone explored the potential value of combining them. Therefore, this study undertakes a quasi-global evaluation of their utility in real-time hydrological monitoring and 1–5-day forecasting with the Dominant River Tracing-Routing Integrated with Variable Infiltration Capacity (VIC) Environment (DRIVE) model. The gauge-corrected IMERG Final Run precipitation estimates and corresponding hydrological simulation are used as the references. Results showed that the hit bias is the dominant error source of IMERG-E, while the false precipitation is more noticeable in GEOS-FP. In terms of hydrological performance, the GEOS-FP-driven model (DRIVE-FP) performance is close to the IMERG-E-driven model (DRIVE-E) performance on day 1, indicating that GEOS-FP could nicely fill the gap of nowcasting caused by the IMERG-E time latency. For longer lead-time forecasts, the bias tends to diminish in most regions, likely because the under- or overestimation in IMERG-E is generally offset by the distinct types of misestimation in GEOS-FP. The skillful initial hydrological conditions present outperformed forecasts in most regions, except for tropical areas where the accuracy of GEOS-FP prevails. Overall, this study provides a valuable view of the combined use of IMERG-E and GEOS-FP precipitation in the context of hydrological nowcasts and forecasts.
Abstract
Precipitation data are known to be the key driver of hydrological simulations. Hence, reliable quantitative precipitation estimates and forecasts are vital for accurate hydrological forecasting. Satellite-based precipitation estimates from Integrated Multi-satellitE Retrievals for GPM Early Run (IMERG-E) and forecasted precipitation from NASA’s Goddard Earth Observing System Forward Processing (GEOS-FP) have shown values in global flood nowcasting and forecasting. However, few studies have comprehensively evaluated their hydrological performance let alone explored the potential value of combining them. Therefore, this study undertakes a quasi-global evaluation of their utility in real-time hydrological monitoring and 1–5-day forecasting with the Dominant River Tracing-Routing Integrated with Variable Infiltration Capacity (VIC) Environment (DRIVE) model. The gauge-corrected IMERG Final Run precipitation estimates and corresponding hydrological simulation are used as the references. Results showed that the hit bias is the dominant error source of IMERG-E, while the false precipitation is more noticeable in GEOS-FP. In terms of hydrological performance, the GEOS-FP-driven model (DRIVE-FP) performance is close to the IMERG-E-driven model (DRIVE-E) performance on day 1, indicating that GEOS-FP could nicely fill the gap of nowcasting caused by the IMERG-E time latency. For longer lead-time forecasts, the bias tends to diminish in most regions, likely because the under- or overestimation in IMERG-E is generally offset by the distinct types of misestimation in GEOS-FP. The skillful initial hydrological conditions present outperformed forecasts in most regions, except for tropical areas where the accuracy of GEOS-FP prevails. Overall, this study provides a valuable view of the combined use of IMERG-E and GEOS-FP precipitation in the context of hydrological nowcasts and forecasts.