Search Results
You are looking at 41 - 50 of 62 items for :
- Author or Editor: Harold E. Brooks x
- Article x
- Refine by Access: All Content x
Abstract
Long-term trends in the historical frequency of environments supportive of atmospheric convection are unclear, and only partially follow the expectations of a warming climate. This uncertainty is driven by the lack of unequivocal changes in the ingredients for severe thunderstorms (i.e., conditional instability, sufficient low-level moisture, initiation mechanism, and vertical wind shear). ERA5 hybrid-sigma data allow for superior characterization of thermodynamic parameters including convective inhibition, which is very sensitive to the number of levels in the lower troposphere. Using hourly data we demonstrate that long-term decreases in instability and stronger convective inhibition cause a decline in the frequency of thunderstorm environments over the southern United States, particularly during summer. Conversely, increasingly favorable conditions for tornadoes are observed during winter across the Southeast. Over Europe, a pronounced multidecadal increase in low-level moisture has provided positive trends in thunderstorm environments over the south, central, and north, with decreases over the east due to strengthening convective inhibition. Modest increases in vertical wind shear and storm-relative helicity have been observed over northwestern Europe and the Great Plains. Both continents exhibit negative trends in the fraction of environments with likely convective initiation. This suggests that despite increasing instability, thunderstorms in a warming climate may be less likely to develop due to stronger convective inhibition and lower relative humidity. Decreases in convective initiation and resulting precipitation may have long-term implications for agriculture, water availability, and the frequency of severe weather such as large hail and tornadoes. Our results also indicate that trends observed over the United States cannot be assumed to be representative of other continents.
Abstract
Long-term trends in the historical frequency of environments supportive of atmospheric convection are unclear, and only partially follow the expectations of a warming climate. This uncertainty is driven by the lack of unequivocal changes in the ingredients for severe thunderstorms (i.e., conditional instability, sufficient low-level moisture, initiation mechanism, and vertical wind shear). ERA5 hybrid-sigma data allow for superior characterization of thermodynamic parameters including convective inhibition, which is very sensitive to the number of levels in the lower troposphere. Using hourly data we demonstrate that long-term decreases in instability and stronger convective inhibition cause a decline in the frequency of thunderstorm environments over the southern United States, particularly during summer. Conversely, increasingly favorable conditions for tornadoes are observed during winter across the Southeast. Over Europe, a pronounced multidecadal increase in low-level moisture has provided positive trends in thunderstorm environments over the south, central, and north, with decreases over the east due to strengthening convective inhibition. Modest increases in vertical wind shear and storm-relative helicity have been observed over northwestern Europe and the Great Plains. Both continents exhibit negative trends in the fraction of environments with likely convective initiation. This suggests that despite increasing instability, thunderstorms in a warming climate may be less likely to develop due to stronger convective inhibition and lower relative humidity. Decreases in convective initiation and resulting precipitation may have long-term implications for agriculture, water availability, and the frequency of severe weather such as large hail and tornadoes. Our results also indicate that trends observed over the United States cannot be assumed to be representative of other continents.
Abstract
Two novel approaches to extending the range of prediction for environments conducive to severe thunderstorm events are described. One approach charts Climate Forecast System, version 2 (CFSv2), run-to-run consistency of the areal extent of severe thunderstorm environments using grid counts of the supercell composite parameter (SCP). Visualization of these environments is charted for each 45-day CFSv2 run initialized at 0000 UTC. CFSv2 ensemble-mean forecast maps of SCP coverage over the contiguous United States are also produced for those forecasts meeting certain criteria for high-impact weather. The applicability of this approach to the severe weather prediction challenge is illustrated using CFSv2 output for a series of severe weather episodes occurring in March and April 2014. Another approach, possibly extending severe weather predictability from CFSv2, utilizes a run-cumulative time-averaging technique of SCP grid counts. This process is described and subjectively verified with severe weather events from early 2014.
Abstract
Two novel approaches to extending the range of prediction for environments conducive to severe thunderstorm events are described. One approach charts Climate Forecast System, version 2 (CFSv2), run-to-run consistency of the areal extent of severe thunderstorm environments using grid counts of the supercell composite parameter (SCP). Visualization of these environments is charted for each 45-day CFSv2 run initialized at 0000 UTC. CFSv2 ensemble-mean forecast maps of SCP coverage over the contiguous United States are also produced for those forecasts meeting certain criteria for high-impact weather. The applicability of this approach to the severe weather prediction challenge is illustrated using CFSv2 output for a series of severe weather episodes occurring in March and April 2014. Another approach, possibly extending severe weather predictability from CFSv2, utilizes a run-cumulative time-averaging technique of SCP grid counts. This process is described and subjectively verified with severe weather events from early 2014.
Abstract
The primary objective of this study was to estimate the percentage of U.S. tornadoes that are spawned annually by squall lines and bow echoes, or quasi-linear convective systems (QLCSs). This was achieved by examining radar reflectivity images for every tornado event recorded during 1998–2000 in the contiguous United States. Based on these images, the type of storm associated with each tornado was classified as cell, QLCS, or other.
Of the 3828 tornadoes in the database, 79% were produced by cells, 18% were produced by QLCSs, and the remaining 3% were produced by other storm types, primarily rainbands of landfallen tropical cyclones. Geographically, these percentages as well as those based on tornado days exhibited wide variations. For example, 50% of the tornado days in Indiana were associated with QLCSs.
In an examination of other tornado attributes, statistically more weak (F1) and fewer strong (F2–F3) tornadoes were associated with QLCSs than with cells. QLCS tornadoes were more probable during the winter months than were cells. And finally, QLCS tornadoes displayed a comparatively higher and statistically significant tendency to occur during the late night/early morning hours. Further analysis revealed a disproportional decrease in F0–F1 events during this time of day, which led the authors to propose that many (perhaps as many as 12% of the total) weak QLCSs tornadoes were not reported.
Abstract
The primary objective of this study was to estimate the percentage of U.S. tornadoes that are spawned annually by squall lines and bow echoes, or quasi-linear convective systems (QLCSs). This was achieved by examining radar reflectivity images for every tornado event recorded during 1998–2000 in the contiguous United States. Based on these images, the type of storm associated with each tornado was classified as cell, QLCS, or other.
Of the 3828 tornadoes in the database, 79% were produced by cells, 18% were produced by QLCSs, and the remaining 3% were produced by other storm types, primarily rainbands of landfallen tropical cyclones. Geographically, these percentages as well as those based on tornado days exhibited wide variations. For example, 50% of the tornado days in Indiana were associated with QLCSs.
In an examination of other tornado attributes, statistically more weak (F1) and fewer strong (F2–F3) tornadoes were associated with QLCSs than with cells. QLCS tornadoes were more probable during the winter months than were cells. And finally, QLCS tornadoes displayed a comparatively higher and statistically significant tendency to occur during the late night/early morning hours. Further analysis revealed a disproportional decrease in F0–F1 events during this time of day, which led the authors to propose that many (perhaps as many as 12% of the total) weak QLCSs tornadoes were not reported.
Abstract
Over the last 50 yr, the number of tornadoes reported in the United States has doubled from about 600 per year in the 1950s to around 1200 in the 2000s. This doubling is likely not related to meteorological causes alone. To account for this increase a simple least squares linear regression was fitted to the annual number of tornado reports. A “big tornado day” is a single day when numerous tornadoes and/or many tornadoes exceeding a specified intensity threshold were reported anywhere in the country. By defining a big tornado day without considering the spatial distribution of the tornadoes, a big tornado day differs from previous definitions of outbreaks. To address the increase in the number of reports, the number of reports is compared to the expected number of reports in a year based on linear regression. In addition, the F1 and greater Fujita-scale record was used in determining a big tornado day because the F1 and greater series was more stationary over time as opposed to the F2 and greater series. Thresholds were applied to the data to determine the number and intensities of the tornadoes needed to be considered a big tornado day. Possible threshold values included fractions of the annual expected value associated with the linear regression and fixed numbers for the intensity criterion. Threshold values of 1.5% of the expected annual total number of tornadoes and/or at least 8 F1 and greater tornadoes identified about 18.1 big tornado days per year. Higher thresholds such as 2.5% and/or at least 15 F1 and greater tornadoes showed similar characteristics, yet identified approximately 6.2 big tornado days per year. Finally, probability distribution curves generated using kernel density estimation revealed that big tornado days were more likely to occur slightly earlier in the year and have a narrower distribution than any given tornado day.
Abstract
Over the last 50 yr, the number of tornadoes reported in the United States has doubled from about 600 per year in the 1950s to around 1200 in the 2000s. This doubling is likely not related to meteorological causes alone. To account for this increase a simple least squares linear regression was fitted to the annual number of tornado reports. A “big tornado day” is a single day when numerous tornadoes and/or many tornadoes exceeding a specified intensity threshold were reported anywhere in the country. By defining a big tornado day without considering the spatial distribution of the tornadoes, a big tornado day differs from previous definitions of outbreaks. To address the increase in the number of reports, the number of reports is compared to the expected number of reports in a year based on linear regression. In addition, the F1 and greater Fujita-scale record was used in determining a big tornado day because the F1 and greater series was more stationary over time as opposed to the F2 and greater series. Thresholds were applied to the data to determine the number and intensities of the tornadoes needed to be considered a big tornado day. Possible threshold values included fractions of the annual expected value associated with the linear regression and fixed numbers for the intensity criterion. Threshold values of 1.5% of the expected annual total number of tornadoes and/or at least 8 F1 and greater tornadoes identified about 18.1 big tornado days per year. Higher thresholds such as 2.5% and/or at least 15 F1 and greater tornadoes showed similar characteristics, yet identified approximately 6.2 big tornado days per year. Finally, probability distribution curves generated using kernel density estimation revealed that big tornado days were more likely to occur slightly earlier in the year and have a narrower distribution than any given tornado day.
Abstract
The problem of forecasting the maintenance of mesoscale convective systems (MCSs) is investigated through an examination of observed proximity soundings. Furthermore, environmental variables that are statistically different between mature and weakening MCSs are input into a logistic regression procedure to develop probabilistic guidance on MCS maintenance, focusing on warm-season quasi-linear systems that persist for several hours. Between the mature and weakening MCSs, shear vector magnitudes over very deep layers are the best discriminators among hundreds of kinematic and thermodynamic variables. An analysis of the shear profiles reveals that the shear component perpendicular to MCS motion (usually parallel to the leading line) accounts for much of this difference in low levels and the shear component parallel to MCS motion accounts for much of this difference in mid- to upper levels. The lapse rates over a significant portion of the convective cloud layer, the convective available potential energy, and the deep-layer mean wind speed are also very good discriminators and collectively provide a high level of discrimination between the mature and dissipation soundings as revealed by linear discriminant analysis. Probabilistic equations developed from these variables used with short-term numerical model output show utility in forecasting the transition of an MCS with a solid line of 50+ dBZ echoes to a more disorganized system with unsteady changes in structure and propagation. This study shows that empirical forecast tools based on environmental relationships still have the potential to provide forecasters with improved information on the qualitative characteristics of MCS structure and longevity. This is especially important since the current and near-term value added by explicit numerical forecasts of convection is still uncertain.
Abstract
The problem of forecasting the maintenance of mesoscale convective systems (MCSs) is investigated through an examination of observed proximity soundings. Furthermore, environmental variables that are statistically different between mature and weakening MCSs are input into a logistic regression procedure to develop probabilistic guidance on MCS maintenance, focusing on warm-season quasi-linear systems that persist for several hours. Between the mature and weakening MCSs, shear vector magnitudes over very deep layers are the best discriminators among hundreds of kinematic and thermodynamic variables. An analysis of the shear profiles reveals that the shear component perpendicular to MCS motion (usually parallel to the leading line) accounts for much of this difference in low levels and the shear component parallel to MCS motion accounts for much of this difference in mid- to upper levels. The lapse rates over a significant portion of the convective cloud layer, the convective available potential energy, and the deep-layer mean wind speed are also very good discriminators and collectively provide a high level of discrimination between the mature and dissipation soundings as revealed by linear discriminant analysis. Probabilistic equations developed from these variables used with short-term numerical model output show utility in forecasting the transition of an MCS with a solid line of 50+ dBZ echoes to a more disorganized system with unsteady changes in structure and propagation. This study shows that empirical forecast tools based on environmental relationships still have the potential to provide forecasters with improved information on the qualitative characteristics of MCS structure and longevity. This is especially important since the current and near-term value added by explicit numerical forecasts of convection is still uncertain.
Abstract
The Storm Prediction Center (SPC) tornado database, generated from NCEI’s Storm Data publication, is indispensable for assessing U.S. tornado risk and investigating tornado–climate connections. Maximizing the value of this database, however, requires accounting for systemically lower reported tornado counts in rural areas owing to a lack of observers. This study uses Bayesian hierarchical modeling to estimate tornado reporting rates and expected tornado counts over the central United States during 1975–2016. Our method addresses a serious solution nonuniqueness issue that may have affected previous studies. The adopted model explains 73% (>90%) of the variance in reported counts at scales of 50 km (>100 km). Population density explains more of the variance in reported tornado counts than other examined geographical covariates, including distance from nearest city, terrain ruggedness index, and road density. The model estimates that approximately 45% of tornadoes within the analysis domain were reported. The estimated tornado reporting rate decreases sharply away from population centers; for example, while >90% of tornadoes that occur within 5 km of a city with population > 100 000 are reported, this rate decreases to <70% at distances of 20–25 km. The method is directly extendable to other events subject to underreporting (e.g., severe hail and wind) and could be used to improve climate studies and tornado and other hazard models for forecasters, planners, and insurance/reinsurance companies, as well as for the development and verification of storm-scale prediction systems.
Abstract
The Storm Prediction Center (SPC) tornado database, generated from NCEI’s Storm Data publication, is indispensable for assessing U.S. tornado risk and investigating tornado–climate connections. Maximizing the value of this database, however, requires accounting for systemically lower reported tornado counts in rural areas owing to a lack of observers. This study uses Bayesian hierarchical modeling to estimate tornado reporting rates and expected tornado counts over the central United States during 1975–2016. Our method addresses a serious solution nonuniqueness issue that may have affected previous studies. The adopted model explains 73% (>90%) of the variance in reported counts at scales of 50 km (>100 km). Population density explains more of the variance in reported tornado counts than other examined geographical covariates, including distance from nearest city, terrain ruggedness index, and road density. The model estimates that approximately 45% of tornadoes within the analysis domain were reported. The estimated tornado reporting rate decreases sharply away from population centers; for example, while >90% of tornadoes that occur within 5 km of a city with population > 100 000 are reported, this rate decreases to <70% at distances of 20–25 km. The method is directly extendable to other events subject to underreporting (e.g., severe hail and wind) and could be used to improve climate studies and tornado and other hazard models for forecasters, planners, and insurance/reinsurance companies, as well as for the development and verification of storm-scale prediction systems.
Abstract
Radar-based convective modes were assigned to a sample of tornadoes and significant severe thunderstorms reported in the contiguous United States (CONUS) during 2003–11. The significant hail (≥2-in. diameter), significant wind (≥65-kt thunderstorm gusts), and tornadoes were filtered by the maximum event magnitude per hour on a 40-km Rapid Update Cycle model horizontal grid. The filtering process produced 22 901 tornado and significant severe thunderstorm events, representing 78.5% of all such reports in the CONUS during the sample period. The convective mode scheme presented herein begins with three radar-based storm categories: 1) discrete cells, 2) clusters of cells, and 3) quasi-linear convective systems (QLCSs). Volumetric radar data were examined for right-moving supercell (RM) and left-moving supercell characteristics within the three radar reflectivity designations. Additional categories included storms with marginal supercell characteristics and linear hybrids with a mix of supercell and QLCS structures. Smoothed kernel density estimates of events per decade revealed clear geographic and seasonal patterns of convective modes with tornadoes. Discrete and cluster RMs are the favored convective mode with southern Great Plains tornadoes during the spring, while the Deep South displayed the greatest variability in tornadic convective modes in the fall, winter, and spring. The Ohio Valley favored a higher frequency of QLCS tornadoes and a lower frequency of RM compared to the Deep South and the Great Plains. Tornadoes with nonsupercellular/non-QLCS storms were more common across Florida and the high plains in the summer. Significant hail events were dominated by Great Plains supercells, while variations in convective modes were largest for significant wind events.
Abstract
Radar-based convective modes were assigned to a sample of tornadoes and significant severe thunderstorms reported in the contiguous United States (CONUS) during 2003–11. The significant hail (≥2-in. diameter), significant wind (≥65-kt thunderstorm gusts), and tornadoes were filtered by the maximum event magnitude per hour on a 40-km Rapid Update Cycle model horizontal grid. The filtering process produced 22 901 tornado and significant severe thunderstorm events, representing 78.5% of all such reports in the CONUS during the sample period. The convective mode scheme presented herein begins with three radar-based storm categories: 1) discrete cells, 2) clusters of cells, and 3) quasi-linear convective systems (QLCSs). Volumetric radar data were examined for right-moving supercell (RM) and left-moving supercell characteristics within the three radar reflectivity designations. Additional categories included storms with marginal supercell characteristics and linear hybrids with a mix of supercell and QLCS structures. Smoothed kernel density estimates of events per decade revealed clear geographic and seasonal patterns of convective modes with tornadoes. Discrete and cluster RMs are the favored convective mode with southern Great Plains tornadoes during the spring, while the Deep South displayed the greatest variability in tornadic convective modes in the fall, winter, and spring. The Ohio Valley favored a higher frequency of QLCS tornadoes and a lower frequency of RM compared to the Deep South and the Great Plains. Tornadoes with nonsupercellular/non-QLCS storms were more common across Florida and the high plains in the summer. Significant hail events were dominated by Great Plains supercells, while variations in convective modes were largest for significant wind events.
Abstract
The threat of damaging hail from severe thunderstorms affects many communities and industries on a yearly basis, with annual economic losses in excess of $1 billion (U.S. dollars). Past hail climatology has typically relied on the National Oceanic and Atmospheric Administration/National Climatic Data Center’s (NOAA/NCDC) Storm Data publication, which has numerous reporting biases and nonmeteorological artifacts. This research seeks to quantify the spatial and temporal characteristics of contiguous United States (CONUS) hail fall, derived from multiradar multisensor (MRMS) algorithms for several years during the Next-Generation Weather Radar (NEXRAD) era, leveraging the Multiyear Reanalysis of Remotely Sensed Storms (MYRORSS) dataset at NOAA’s National Severe Storms Laboratory (NSSL). The primary MRMS product used in this study is the maximum expected size of hail (MESH). The preliminary climatology includes 42 months of quality controlled and reprocessed MESH grids, which spans the warm seasons for four years (2007–10), covering 98% of all Storm Data hail reports during that time. The dataset has 0.01° latitude × 0.01° longitude × 31 vertical levels spatial resolution, and 5-min temporal resolution. Radar-based and reports-based methods of hail climatology are compared. MRMS MESH demonstrates superior coverage and resolution over Storm Data hail reports, and is largely unbiased. The results reveal a broad maximum of annual hail fall in the Great Plains and a diminished secondary maximum in the Southeast United States. Potential explanations for the differences in the two methods of hail climatology are also discussed.
Abstract
The threat of damaging hail from severe thunderstorms affects many communities and industries on a yearly basis, with annual economic losses in excess of $1 billion (U.S. dollars). Past hail climatology has typically relied on the National Oceanic and Atmospheric Administration/National Climatic Data Center’s (NOAA/NCDC) Storm Data publication, which has numerous reporting biases and nonmeteorological artifacts. This research seeks to quantify the spatial and temporal characteristics of contiguous United States (CONUS) hail fall, derived from multiradar multisensor (MRMS) algorithms for several years during the Next-Generation Weather Radar (NEXRAD) era, leveraging the Multiyear Reanalysis of Remotely Sensed Storms (MYRORSS) dataset at NOAA’s National Severe Storms Laboratory (NSSL). The primary MRMS product used in this study is the maximum expected size of hail (MESH). The preliminary climatology includes 42 months of quality controlled and reprocessed MESH grids, which spans the warm seasons for four years (2007–10), covering 98% of all Storm Data hail reports during that time. The dataset has 0.01° latitude × 0.01° longitude × 31 vertical levels spatial resolution, and 5-min temporal resolution. Radar-based and reports-based methods of hail climatology are compared. MRMS MESH demonstrates superior coverage and resolution over Storm Data hail reports, and is largely unbiased. The results reveal a broad maximum of annual hail fall in the Great Plains and a diminished secondary maximum in the Southeast United States. Potential explanations for the differences in the two methods of hail climatology are also discussed.
Abstract
In this study we compared 3.7 million rawinsonde observations from 232 stations over Europe and North America with proximal vertical profiles from ERA5 and MERRA-2 to examine how well reanalysis depicts observed convective parameters. Larger differences between soundings and reanalysis are found for thermodynamic theoretical parcel parameters, low-level lapse rates, and low-level wind shear. In contrast, reanalysis best represents temperature and moisture variables, midtropospheric lapse rates, and mean wind. Both reanalyses underestimate CAPE, low-level moisture, and wind shear, particularly when considering extreme values. Overestimation is observed for low-level lapse rates, midtropospheric moisture, and the level of free convection. Mixed-layer parcels have overall better accuracy when compared to most-unstable parcels, especially considering convective inhibition and lifted condensation level. Mean absolute error for both reanalyses has been steadily decreasing over the last 39 years for almost every analyzed variable. Compared to MERRA-2, ERA5 has higher correlations and lower mean absolute errors. MERRA-2 is typically drier and less unstable over central Europe and the Balkans, with the opposite pattern over western Russia. Both reanalyses underestimate CAPE and CIN over the Great Plains. Reanalyses are more reliable for lower elevation stations and struggle along boundaries such as coastal zones and mountains. Based on the results from this and prior studies we suggest that ERA5 is likely one of the most reliable available reanalyses for exploration of convective environments, mainly due to its improved resolution. For future studies we also recommend that computation of convective variables should use model levels that provide more accurate sampling of the boundary layer conditions compared to less numerous pressure levels.
Abstract
In this study we compared 3.7 million rawinsonde observations from 232 stations over Europe and North America with proximal vertical profiles from ERA5 and MERRA-2 to examine how well reanalysis depicts observed convective parameters. Larger differences between soundings and reanalysis are found for thermodynamic theoretical parcel parameters, low-level lapse rates, and low-level wind shear. In contrast, reanalysis best represents temperature and moisture variables, midtropospheric lapse rates, and mean wind. Both reanalyses underestimate CAPE, low-level moisture, and wind shear, particularly when considering extreme values. Overestimation is observed for low-level lapse rates, midtropospheric moisture, and the level of free convection. Mixed-layer parcels have overall better accuracy when compared to most-unstable parcels, especially considering convective inhibition and lifted condensation level. Mean absolute error for both reanalyses has been steadily decreasing over the last 39 years for almost every analyzed variable. Compared to MERRA-2, ERA5 has higher correlations and lower mean absolute errors. MERRA-2 is typically drier and less unstable over central Europe and the Balkans, with the opposite pattern over western Russia. Both reanalyses underestimate CAPE and CIN over the Great Plains. Reanalyses are more reliable for lower elevation stations and struggle along boundaries such as coastal zones and mountains. Based on the results from this and prior studies we suggest that ERA5 is likely one of the most reliable available reanalyses for exploration of convective environments, mainly due to its improved resolution. For future studies we also recommend that computation of convective variables should use model levels that provide more accurate sampling of the boundary layer conditions compared to less numerous pressure levels.
Despite the meteorological community's long-term interest in weather-society interactions, efforts to understand socioeconomic aspects of weather prediction and to incorporate this knowledge into the weather prediction system have yet to reach critical mass. This article aims to reinvigorate interest in societal and economic research and applications (SERA) activities within the meteorological and social science communities by exploring key SERA issues and proposing SERA priorities for the next decade.
The priorities were developed by the authors, building on previous work, with input from a diverse group of social scientists and meteorologists who participated in a SERA workshop in August 2006. The workshop was organized to provide input to the North American regional component of THORPEX: A Global Atmospheric Research Programme, but the priorities identified are broadly applicable to all weather forecast research and applications.
To motivate and frame SERA activities, we first discuss the concept of high-impact weather forecasts and the chain from forecast creation to value realization. Next, we present five interconnected SERA priority themes—use of forecast information in decision making, communication of forecast uncertainty, user-relevant verification, economic value of forecasts, and decision support— and propose research integrated across the themes.
SERA activities can significantly improve understanding of weather-society interactions to the benefit of the meteorological community and society. However, reaching this potential will require dedicated effort to bring together and maintain a sustainable interdisciplinary community.
Despite the meteorological community's long-term interest in weather-society interactions, efforts to understand socioeconomic aspects of weather prediction and to incorporate this knowledge into the weather prediction system have yet to reach critical mass. This article aims to reinvigorate interest in societal and economic research and applications (SERA) activities within the meteorological and social science communities by exploring key SERA issues and proposing SERA priorities for the next decade.
The priorities were developed by the authors, building on previous work, with input from a diverse group of social scientists and meteorologists who participated in a SERA workshop in August 2006. The workshop was organized to provide input to the North American regional component of THORPEX: A Global Atmospheric Research Programme, but the priorities identified are broadly applicable to all weather forecast research and applications.
To motivate and frame SERA activities, we first discuss the concept of high-impact weather forecasts and the chain from forecast creation to value realization. Next, we present five interconnected SERA priority themes—use of forecast information in decision making, communication of forecast uncertainty, user-relevant verification, economic value of forecasts, and decision support— and propose research integrated across the themes.
SERA activities can significantly improve understanding of weather-society interactions to the benefit of the meteorological community and society. However, reaching this potential will require dedicated effort to bring together and maintain a sustainable interdisciplinary community.