Search Results

You are looking at 41 - 50 of 73 items for

  • Author or Editor: Hong Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Jongil Han
,
Weiguo Wang
,
Young C. Kwon
,
Song-You Hong
,
Vijay Tallapragada
, and
Fanglin Yang

Abstract

The current operational NCEP Global Forecast System (GFS) cumulus convection schemes are updated with a scale-aware parameterization where the cloud mass flux decreases with increasing grid resolution. The ratio of advective time to convective turnover time is also taken into account for the scale-aware parameterization. In addition, the present deep cumulus convection closure using the quasi-equilibrium assumption is no longer used for grid sizes smaller than a threshold value. For the shallow cumulus convection scheme, the cloud-base mass flux is modified to be given by a function of mean updraft velocity. A simple aerosol-aware parameterization where rain conversion in the convective updraft is modified by aerosol number concentration is also included in the update. Along with the scale- and aerosol-aware parameterizations, more changes are made to the schemes. The cloud-base mass-flux computation in the deep convection scheme is modified to use convective turnover time as the convective adjustment time scale. The rain conversion rate is modified to decrease with decreasing air temperature above the freezing level. Convective inhibition in the subcloud layer is used as an additional trigger condition. Convective cloudiness is enhanced by considering suspended cloud condensate in the updraft. The lateral entrainment in the deep convection scheme is also enhanced to more strongly suppress convection in a drier environment. The updated NCEP GFS cumulus convection schemes display significant improvements especially in the summertime continental U.S. precipitation forecasts.

Full access
Jonathan J. Gourley
,
Yang Hong
,
Zachary L. Flamig
,
Li Li
, and
Jiahu Wang

Abstract

Rainfall products from radar, satellite, rain gauges, and combinations have been evaluated for a season of record rainfall in a heavily instrumented study domain in Oklahoma. Algorithm performance is evaluated in terms of spatial scale, temporal scale, and rainfall intensity. Results from this study will help users of rainfall products to understand their errors. Moreover, it is intended that developers of rainfall algorithms will use the results presented herein to optimize the contribution from available sensors to yield the most skillful multisensor rainfall products.

Full access
Pi-Huan Wang
,
Siu-Shung Hong
,
Mao-Fou Wu
, and
Adarsh Deepak

Abstract

The temporal and spatial variations of the zonally-averaged ozone beating rate in the middle atmosphere on a global scale are investigated in detail based on a model study. This study shows that the mean ozone heating rate calculation can be made in a realistic manner by taking advantage of the existing two-dimensional ozone distribution and including the effect of the sphericity of the earth's atmosphere. The obtained ozone heating rates have also been Fourier-analyzed. The common features of the first three harmonic components which correspond respectively to the annual, semiannual and terannual variations are (1) the local maximum amplitudes are located in the altitude regions between 45 and 57 km; (2) local maximum amplitude can be found in the polar region; and (3) maximum horizontal gradients of the beating rate are concentrated in the high latitudes from 60 to 90°. It is also found that the amplitude of the second Fourier component at the pole is about six times greater than that at the equator.

Full access
Jonathan J. Gourley
,
Yang Hong
,
Zachary L. Flamig
,
Jiahu Wang
,
Humberto Vergara
, and
Emmanouil N. Anagnostou

Abstract

This study evaluates rainfall estimates from the Next Generation Weather Radar (NEXRAD), operational rain gauges, Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) in the context as inputs to a calibrated, distributed hydrologic model. A high-density Micronet of rain gauges on the 342-km2 Ft. Cobb basin in Oklahoma was used as reference rainfall to calibrate the National Weather Service’s (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) at 4-km/l-h and 0.25°/3-h resolutions. The unadjusted radar product was the overall worst product, while the stage IV radar product with hourly rain gauge adjustment had the best hydrologic skill with a Micronet relative efficiency score of −0.5, only slightly worse than the reference simulation forced by Micronet rainfall. Simulations from TRMM-3B42RT were better than PERSIANN-CCS-RT (a real-time version of PERSIANN-CSS) and equivalent to those from the operational rain gauge network. The high degree of hydrologic skill with TRMM-3B42RT forcing was only achievable when the model was calibrated at TRMM’s 0.25°/3-h resolution, thus highlighting the importance of considering rainfall product resolution during model calibration.

Full access
Zhongkun Hong
,
Zhongying Han
,
Xueying Li
,
Di Long
,
Guoqiang Tang
, and
Jianhua Wang

Abstract

Precipitation over the Tibetan Plateau (TP), known as Asia’s water tower, plays a critical role in regional water and energy cycles, largely affecting water availability for downstream countries. Rain gauges are indispensable in precipitation measurement, but are quite limited in the TP, which features complex terrain and a harsh environment. Satellite and reanalysis precipitation products can provide complementary information for ground-based measurements, particularly over large, poorly gauged areas. Here we optimally merged gauge, satellite, and reanalysis data by determining weights of various data sources using artificial neural networks (ANNs) and environmental variables including elevation, surface pressure, and wind speed. A Multi-Source Precipitation (MSP) dataset was generated at a daily time scale and a spatial resolution of 0.1° across the TP for the 1998–2017 period. The correlation coefficient (CC) of daily precipitation between the MSP and gauge observations was highest (0.74) and the root-mean-square error was the second lowest compared with four other satellite products, indicating the quality of the MSP and the effectiveness of the data merging approach. We further evaluated the hydrological utility of different precipitation products using a distributed hydrological model for the poorly gauged headwaters of the Yangtze and Yellow Rivers in the TP. The MSP achieved the best Nash–Sutcliffe efficiency coefficient (over 0.8) and CC (over 0.9) for daily streamflow simulations during 2004–14. In addition, the MSP performed best over the ungauged western TP based on multiple collocation evaluation. The merging method could be applicable to other data-scarce regions globally to provide high-quality precipitation data for hydrological research.

Full access
Mei Hong
,
Dong Wang
,
Ren Zhang
,
Xi Chen
,
Jing-Jing Ge
, and
Dandan Yu

Abstract

Abnormal activity of the western Pacific subtropical high (WPSH) may result in extreme weather events in East Asia. However, because the relationship between the WPSH and other components of the East Asian summer monsoon (EASM) system is unknown, it is still difficult to forecast such abnormal activity. The delay-relevant method is used to study 2010 data for abnormal weather and it is concluded that the Indian monsoon latent heat flux, the Somali low-level jet, and the Tibetan high activity index can significantly affect anomalies in the WPSH in the EASM system. By combining genetic algorithms and statistical–dynamical reconstruction theory, a nonlinear statistical–dynamical model of the WPSH and these three influencing factors was objectively reconstructed from actual 2010 data and a dynamically extended forecasting experiment was carried out. To further test the forecasting performance of the reconstructed model, further experiments using data from nine abnormal WPSH years and eight normal WPSH years were performed for comparison. All the results suggest that the forecasts of the subtropical high area index, the Indian monsoon latent heat flux, the Somali low-level jet, and the Tibetan high activity index all have good performance in the short and medium terms (<25 days). Not only is the forecasting trend accurate, but the mean absolute percentage error is ≤9%. This work suggests new areas of research into the association between the WPSH and EASM systems and provides a new method for the prediction of the WPSH area index.

Full access
Yu Zhang
,
Yang Hong
,
Xuguang Wang
,
Jonathan J. Gourley
,
Xianwu Xue
,
Manabendra Saharia
,
Guangheng Ni
,
Gaili Wang
,
Yong Huang
,
Sheng Chen
, and
Guoqiang Tang

Abstract

Prediction, and thus preparedness, in advance of flood events is crucial for proactively reducing their impacts. In the summer of 2012, Beijing, China, experienced extreme rainfall and flooding that caused 79 fatalities and economic losses of $1.6 billion. Using rain gauge networks as a benchmark, this study investigated the detectability and predictability of the 2012 Beijing event via the Global Hydrological Prediction System (GHPS), forced by the NASA Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis at near–real time and by the deterministic and ensemble precipitation forecast products from the NOAA Global Forecast System (GFS) at several lead times. The results indicate that the disastrous flooding event was detectable by the satellite-based global precipitation observing system and predictable by the GHPS forced by the GFS 4 days in advance. However, the GFS demonstrated inconsistencies from run to run, limiting the confidence in predicting the extreme event. The GFS ensemble precipitation forecast products from NOAA for streamflow forecasts provided additional information useful for estimating the probability of the extreme event. Given the global availability of satellite-based precipitation in near–real time and GFS precipitation forecast products at varying lead times, this study demonstrates the opportunities and challenges that exist for an integrated application of GHPS. This system is particularly useful for the vast ungauged regions of the globe.

Full access
Kai-Chieh Yang
,
Sen Jan
,
Yiing Jang Yang
,
Ming-Huei Chang
,
Joe Wang
,
Shih-Hong Wang
,
Steven R. Ramp
,
D. Benjamin Reeder
, and
Dong S. Ko

Abstract

Observations from a Seaglider, two pressure-sensor-equipped inverted echo sounders (PIESs), and a thermistor chain (T-chain) mooring were used to determine the waveform and timing of internal solitary waves (ISWs) over the continental slope east of Dongsha Atoll. The Korteweg–de Vries (KdV) and Dubreil–Jacotin–Long (DJL) equations supplemented the data from repeated profiling by the glider at a fixed position (depth ∼1017 m) during 19–24 May 2019. The glider-recorded pressure perturbations were used to compute the rarely measured vertical velocity (w) with a static glider flight model. After removing the internal tide–caused vertical velocity, the w of the eight mode-1 ISWs ranged from −0.35 to 0.36 m s−1 with an uncertainty of ±0.005 m s−1 due to turbulent oscillations and measurement error. The horizontal velocity profiles, wave speeds, and amplitudes of the eight ISWs were further derived from the KdV and DJL equations using the glider-observed w and potential density profiles. The mean speed of the corresponding ISW from the PIES deployed at ∼2000 m depth to the T-chain moored at 500 m depth and the 19°C isotherm displacement computed from the T-chain were used to validate the waveform derived from KdV and DJL. The validation suggests that the DJL equation provides reasonably representative wave speed and amplitude for the eight ISWs compared to the KdV equation. Stand-alone glider data provide near-real-time hydrography and vertical velocities for mode-1 ISWs and are useful for characterizing the anatomy of ISWs and validating numerical simulations of these waves.

Significance Statement

Internal solitary waves (ISWs), which vertically displace isotherms by approximately 100 m, considerably affect nutrient pumping, turbulent mixing, acoustic propagation, underwater navigation, bedform generation, and engineering structures in the ocean. A complete understanding of their anatomy and dynamics has many applications, such as predicting the timing and position of mode-1 ISWs and evaluating their environmental impacts. To improve our understanding of these waves and validate the two major theories based on the Korteweg–de Vries (KdV) and Dubreil–Jacotin–Long (DJL) equations, the hydrography data collected from stand-alone, real-time profiling of an autonomous underwater vehicle (Seaglider) have proven to be useful in determining the waveform of these transbasin ISWs in deep water. The solutions to the DJL equation show good agreement with the properties of mode-1 ISWs obtained from the rare in situ data, whereas the solutions to the KdV equation underestimate these properties. Seaglider observations also provide in situ data to evaluate the performance of numerical simulations and forecasting of ISWs in the northern South China Sea.

Open access
Ming Feng
,
Yongliang Duan
,
Susan Wijffels
,
Je-Yuan Hsu
,
Chao Li
,
Huiwu Wang
,
Yang Yang
,
Hong Shen
,
Jianjun Liu
,
Chunlin Ning
, and
Weidong Yu

Abstract

Sea surface temperatures (SSTs) north of Australia in the Indonesian–Australian Basin are significantly influenced by Madden–Julian oscillation (MJO), an eastward-moving atmospheric disturbance that traverses the globe in the tropics. The region also has large-amplitude diurnal SST variations, which may influence the air–sea heat and moisture fluxes, that provide feedback to the MJO evolution. During the 2018/19 austral summer, a field campaign aiming to better understand the influences of air–sea coupling on the MJO was conducted north of Australia in the Indonesian–Australian Basin. Surface meteorology from buoy observations and upper-ocean data from autonomous fast-profiling float observations were collected. Two MJO convective phases propagated eastward across the region in mid-December 2018 and late January 2019 and the second MJO was in conjunction with a tropical cyclone development. Observations showed that SST in the region was rather sensitive to the MJO forcing. Air–sea heat fluxes warmed the SST throughout the 2018/19 austral summer, punctuated by the MJO activities, with a 2°–3°C drop in SST during the two MJO events. Substantial diurnal SST variations during the suppressed phases of the MJOs were observed, and the near-surface thermal stratifications provided positive feedback for the peak diurnal SST amplitude, which may be a mechanism to influence the MJO evolution. Compared to traditionally vessel-based observation programs, we have relied on fast-profiling floats as the main vehicle in measuring the upper-ocean variability from diurnal to the MJO time scales, which may pave the way for using cost-effective technology in similar process studies.

Free access
Cheng Qian
,
Jun Wang
,
Siyan Dong
,
Hong Yin
,
Claire Burke
,
Andrew Ciavarella
,
Buwen Dong
,
Nicolas Freychet
,
Fraser C. Lott
, and
Simon F. B. Tett
Full access