Search Results

You are looking at 41 - 50 of 69 items for

  • Author or Editor: J. J. Gourley x
  • Refine by Access: All Content x
Clear All Modify Search
Zhijun Huang
,
Huan Wu
,
Robert F. Adler
,
Guy Schumann
,
Jonathan J. Gourley
,
Albert Kettner
, and
Nergui Nanding

Abstract

A reliable flood event inventory that reflects the occurrence and evolution of past floods is important for studies of flood hazards and risks, hydroclimatic extremes, and future flood projections. However, currently available flood inventories are based on single-sourced data and often neglect underreported or less impactful flood events. Furthermore, traditional archives store flood events only at sparse geographic points, which significantly limits their further applicability. Also, few publicly available archives contain all-inclusive records of potential natural flooded area over time. To tackle these challenges, we construct two types of multisourced flood event inventories (MFI) for all river basins across the contiguous United States covering the period 1998–2013 on daily and subcatchment scales, which is publicly available at http://flood.umd.edu/download/CONUS/. These archives integrate flood information from in situ observations, remote sensing observations, hydrological model simulations, and five high-quality precipitation products. The first inventory (MFI-Actual) includes all actual floods that occurred in the presence of flood protection infrastructures, while the second, “natural (undefended)” inventory (MFI-Natural) reconstructs the possible “historical” floods without flood protection, which could be more directly influenced by climate variation. In the proposed two inventories, 2,755 and 4,661 flood events were estimated, respectively. MFI-Natural reconstructed 1,597 floods in ungauged basins, and recovered 608 extreme streamflow events in gauged subcatchments where floods would have happened if there were no flood protection. There is an average of four upstream dams located in these flood-recovered subcatchments, which indicates that modern flood defenses efficiently prevent significant flooding from extreme precipitation in many catchments over the country.

Full access
Jonathan J. Gourley
,
Yang Hong
,
Zachary L. Flamig
,
Jiahu Wang
,
Humberto Vergara
, and
Emmanouil N. Anagnostou

Abstract

This study evaluates rainfall estimates from the Next Generation Weather Radar (NEXRAD), operational rain gauges, Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) in the context as inputs to a calibrated, distributed hydrologic model. A high-density Micronet of rain gauges on the 342-km2 Ft. Cobb basin in Oklahoma was used as reference rainfall to calibrate the National Weather Service’s (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) at 4-km/l-h and 0.25°/3-h resolutions. The unadjusted radar product was the overall worst product, while the stage IV radar product with hourly rain gauge adjustment had the best hydrologic skill with a Micronet relative efficiency score of −0.5, only slightly worse than the reference simulation forced by Micronet rainfall. Simulations from TRMM-3B42RT were better than PERSIANN-CCS-RT (a real-time version of PERSIANN-CSS) and equivalent to those from the operational rain gauge network. The high degree of hydrologic skill with TRMM-3B42RT forcing was only achievable when the model was calibrated at TRMM’s 0.25°/3-h resolution, thus highlighting the importance of considering rainfall product resolution during model calibration.

Full access
Nusrat Yussouf
,
Katie A. Wilson
,
Steven M. Martinaitis
,
Humberto Vergara
,
Pamela L. Heinselman
, and
Jonathan J. Gourley

Abstract

The goal of the National Oceanic and Atmospheric Administration’s (NOAA) Warn-on-Forecast (WoF) program is to provide frequently updating, probabilistic model guidance that will enable National Weather Service (NWS) forecasters to produce more continuous communication of hazardous weather threats (e.g., heavy rainfall, flash floods, damaging wind, large hail, and tornadoes) between the watch and warning temporal and spatial scales. To evaluate the application of this WoF concept for probabilistic short-term flash flood prediction, the 0–3-h rainfall forecasts from NOAA National Severe Storms Laboratory’s (NSSL) experimental WoF System (WoFS) were integrated as the forcing to the NWS operational hydrologic modeling core within the Flooded Locations and Simulated Hydrographs (FLASH) system. Initial assessment of the potential impacts of probabilistic short-term flash flood forecasts from this coupled atmosphere–hydrology (WoFS-FLASH) modeling system were evaluated in the 2018 Hydrometeorology Testbed Multi-Radar Multi-Sensor Hydrology experiment held in Norman, Oklahoma. During the 3-week experiment period, a total of nine NWS forecasters analyzed three retrospective flash flood events in archive mode. This study will describe specifically what information participants extracted from the WoFS-FLASH products during these three archived events, and how this type of information is expected to impact operational decision-making processes. Overall feedback from the testbed participants’ evaluations show promise for the coupled NSSL WoFS-FLASH system probabilistic flash flood model guidance to enable earlier assessment and detection of flash flood threats and to advance the current warning lead time for these events.

Free access
Jonathan J. Gourley
,
Jessica M. Erlingis
,
Yang Hong
, and
Ernest B. Wells

Abstract

This paper evaluates, for the first time, flash-flood guidance (FFG) values and recently developed gridded FFG (GFFG) used by the National Weather Service (NWS) to monitor and predict imminent flash flooding, which is the leading storm-related cause of death in the United States. It is envisioned that results from this study will be used 1) to establish benchmark performance of existing operational flash-flood prediction tools and 2) to provide information to NWS forecasters that reveals how the existing tools can be readily optimized. Sources used to evaluate the products include official reports of flash floods from the NWS Storm Data database, discharge measurements on small basins available from the U.S. Geological Survey, and witness reports of flash flooding collected during the Severe Hazards Analysis and Verification Experiment. Results indicated that the operational guidance values, with no calibration, were marginally skillful, with the highest critical success index of 0.20 occurring with 3-h GFFG. The false-alarm rates fell and the skill improved to 0.34 when the rainfall was first spatially averaged within basins and then reached 50% of FFG for 1-h accumulation and exceeded 3-h FFG. Although the skill of the GFFG values was generally lower than that of their FFG counterparts, GFFG was capable of detecting the spatial variability of reported flash flooding better than FFG was for a case study in an urban setting.

Full access
Robert A. Clark
,
Jonathan J. Gourley
,
Zachary L. Flamig
,
Yang Hong
, and
Edward Clark

Abstract

This study quantifies the skill of the National Weather Service’s (NWS) flash flood guidance (FFG) product. Generated by River Forecast Centers (RFCs) across the United States, local NWS Weather Forecast Offices compare estimated and forecast rainfall to FFG to monitor and assess flash flooding potential. A national flash flood observation database consisting of reports in the NWS publication Storm Data and U.S. Geological Survey (USGS) stream gauge measurements are used to determine the skill of FFG over a 4-yr period. FFG skill is calculated at several different precipitation-to-FFG ratios for both observation datasets. Although a ratio of 1.0 nominally indicates a potential flash flooding event, this study finds that FFG can be more skillful when ratios other than 1.0 are considered. When the entire continental United States is considered, the highest observed critical success index (CSI) with 1-h FFG is 0.20 for the USGS dataset, which should be considered a benchmark for future research that seeks to improve, modify, or replace the current FFG system. Regional benchmarks of FFG skill are also determined on an RFC-by-RFC basis. When evaluated against Storm Data reports, the regional skill of FFG ranges from 0.00 to 0.19. When evaluated against USGS stream gauge measurements, the regional skill of FFG ranges from 0.00 to 0.44.

Full access
I. Ruin
,
C. Lutoff
,
L. Creton-Cazanave
,
S. Anquetin
,
M. Borga
,
S. Chardonnel
,
J.-D. Creutin
,
J. Gourley
,
E. Gruntfest
,
S. Nobert
, and
J. Thielen
Full access
O. Bousquet
,
A. Berne
,
J. Delanoe
,
Y. Dufournet
,
J. J. Gourley
,
J. Van-Baelen
,
C. Augros
,
L. Besson
,
B. Boudevillain
,
O. Caumont
,
E. Defer
,
J. Grazioli
,
D. J. Jorgensen
,
P.-E. Kirstetter
,
J.-F. Ribaud
,
J. Beck
,
G. Delrieu
,
V. Ducrocq
,
D. Scipion
,
A. Schwarzenboeck
, and
J. Zwiebel

Abstract

The radar network deployed in southern France during the first special observing period (SOP 1) of the Hydrological Cycle in the Mediterranean Experiment (HyMeX) was designed to precisely document the 3D structure of moist upstream flow impinging on complex terrain as a function of time, height, and along-barrier distance, and surface rainfall patterns associated with orographic precipitation events. This deployment represents one of the most ambitious field experiments yet, endeavoring to collect high-quality observations of thunderstorms and precipitation systems developing over and in the vicinity of a major mountain chain.

Radar observations collected during HyMeX represent a valuable, and potentially unique, dataset that will be used to improve our knowledge of physical processes at play within coastal orographic heavy precipitating systems and to develop, and evaluate, novel radar-based products for research and operational activities. This article provides a concise description of this radar network and discusses innovative research ideas based upon preliminary analyses of radar observations collected during this field project with emphasis on the synergetic use of dual-polarimetric radar measurements collected at multiple frequencies.

Full access
Sheng Chen
,
Jonathan J. Gourley
,
Yang Hong
,
Qing Cao
,
Nicholas Carr
,
Pierre-Emmanuel Kirstetter
,
Jian Zhang
, and
Zac Flamig

Abstract

In meteorological investigations, the reference variable or “ground truth” typically comes from an instrument. This study uses human observations of surface precipitation types to evaluate the same variables that are estimated from an automated algorithm. The NOAA/National Severe Storms Laboratory’s Multi-Radar Multi-Sensor (MRMS) system relies primarily on observations from the Next Generation Radar (NEXRAD) network and model analyses from the Earth System Research Laboratory’s Rapid Refresh (RAP) system. Each hour, MRMS yields quantitative precipitation estimates and surface precipitation types as rain or snow. To date, the surface precipitation type product has received little attention beyond case studies. This study uses precipitation type reports collected by citizen scientists who have contributed observations to the meteorological Phenomena Identification Near the Ground (mPING) project. Citizen scientist reports of rain and snow during the winter season from 19 December 2012 to 30 April 2013 across the United States are compared to the MRMS precipitation type products. Results show that while the mPING reports have a limited spatial distribution (they are concentrated in urban areas), they yield similar critical success indexes of MRMS precipitation types in different cities. The remaining disagreement is attributed to an MRMS algorithmic deficiency of yielding too much rain, as opposed to biases in the mPING reports. The study also shows reduced detectability of snow compared to rain, which is attributed to lack of sensitivity at S band and the shallow nature of winter storms. Some suggestions are provided for improving the MRMS precipitation type algorithm based on these findings.

Full access
Humberto Vergara
,
Yang Hong
,
Jonathan J. Gourley
,
Emmanouil N. Anagnostou
,
Viviana Maggioni
,
Dimitrios Stampoulis
, and
Pierre-Emmanuel Kirstetter

Abstract

Uncertainty due to resolution of current satellite-based rainfall products is believed to be an important source of error in applications of hydrologic modeling and forecasting systems. A method to account for the input’s resolution and to accurately evaluate the hydrologic utility of satellite rainfall estimates is devised and analyzed herein. A radar-based Multisensor Precipitation Estimator (MPE) rainfall product (4 km, 1 h) was utilized to assess the impact of resolution of precipitation products on the estimation of rainfall and subsequent simulation of streamflow on a cascade of basins ranging from approximately 500 to 5000 km2. MPE data were resampled to match the Tropical Rainfall Measuring Mission’s (TRMM) 3B42RT satellite rainfall product resolution (25 km, 3 h) and compared with its native resolution data to estimate errors in rainfall fields. It was found that resolution degradation considerably modifies the spatial structure of rainfall fields. Additionally, a sensitivity analysis was designed to effectively isolate the error on hydrologic simulations due to rainfall resolution using a distributed hydrologic model. These analyses revealed that resolution degradation introduces a significant amount of error in rainfall fields, which propagated to the streamflow simulations as magnified bias and dampened aggregated error (RMSEs). Furthermore, the scale dependency of errors due to resolution degradation was found to intensify with increasing streamflow magnitudes. The hydrologic model was calibrated with satellite- and original-resolution MPE using a multiscale approach. The resulting simulations had virtually the same skill, suggesting that the effects of rainfall resolution can be accounted for during calibration of hydrologic models, which was further demonstrated with 3B42RT.

Full access
Yixin Wen
,
Pierre Kirstetter
,
Yang Hong
,
Jonathan J. Gourley
,
Qing Cao
,
Jian Zhang
,
Zac Flamig
, and
Xianwu Xue

Abstract

Over mountainous terrain, ground weather radars face limitations in monitoring surface precipitation as they are affected by radar beam blockages along with the range-dependent biases due to beam broadening and increase in altitude with range. These issues are compounded by precipitation structures that are relatively shallow and experience growth at low levels due to orographic enhancement. To improve surface precipitation estimation, researchers at the University of Oklahoma have demonstrated the benefits of integrating the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) products into the ground-based NEXRAD rainfall estimation system using a vertical profile of reflectivity (VPR) identification and enhancement (VPR-IE) approach. However, the temporal resolution of TRMM limits the application of VPR-IE method operationally. To implement the VPR-IE concept into the National Mosaic and Multi-Sensor QPE (NMQ) system in real time, climatological VPRs from 11 years of TRMM PR observations have been characterized for different stratiform/convective rain types, seasons, and surface rain intensities. Then, these representative profiles are used to adjust ground radar–based precipitation estimates in the NMQ system based on different precipitation structures. This study conducts a comprehensive evaluation of the newly developed climatological VPR-IE (CVPR-IE) method on winter events (January, February, and December) in 2011. The statistical analysis reveals that the CVPR-IE method provides a clear improvement over the original radar QPE in the NMQ system for the study region. Compared to physically based VPRs from real-time PR measurements, climatological VPRs have limitations in representing precipitation structure for individual events. A hybrid correction scheme incorporating both climatological and real-time VPR information is desired for better skill in the future.

Full access