Search Results

You are looking at 41 - 48 of 48 items for

  • Author or Editor: J. N. Moum x
  • Refine by Access: All Content x
Clear All Modify Search
W. D. Smyth, J. N. Moum, L. Li, and S. A. Thorpe

Abstract

A new theory of shear instability in a turbulent environment is applied to eight days of velocity and density profiles from the upper-equatorial Pacific. This period featured a regular diurnal cycle of surface forcing, together with a clear response in upper-ocean mixing. During the day, a layer of stable stratification and shear forms at the surface. During late afternoon and evening, this stratified shear layer descends, leaving the nocturnal mixing layer above it. Using high-resolution current measurements, the detailed structure of the descending shear layer is seen for the first time. Linear stability analysis is conducted using a new method that accounts for the effects of preexisting turbulence on instability growth. Shear instability follows a diurnal cycle linked to the afternoon descent of the surface shear layer. This cycle is revealed only when the effect of turbulence is accounted for in the stability analysis. The cycle of instability leads the diurnal mixing cycle, typically by 2–3 h, consistent with the time needed for instabilities to grow and break. Late at night, the resulting turbulence suppresses further instabilities, lending an asymmetry to the mixing cycle that has not been noticed in previous measurements. Deep cycle mixing is triggered by instabilities formed as the descending shear layer merges with the marginally unstable shear of the Equatorial Undercurrent. In the morning, turbulence decays and the upper ocean restratifies. Wind accelerates the near-surface flow to form a new unstable shear layer, and the cycle begins again.

Full access
Eric D. Skyllingstad, W. D. Smyth, J. N. Moum, and H. Wijesekera

Abstract

The response of the upper ocean to westerly wind forcing in the western equatorial Pacific was modeled by means of large-eddy simulation for the purpose of comparison with concurrent microstructure observations. The model was initialized using currents and hydrography measured during the Coupled Ocean–Atmosphere Response Experiment (COARE) and forced using measurements of surface fluxes over a 24-h period. Comparison of turbulence statistics from the model with those estimated from concurrent measurements reveals good agreement within the mixed layer. The shortcomings of the model appear in the stratified fluid below the mixed layer, where the vertical length scales of turbulent eddies are limited by stratification and are not adequately resolved by the model. Model predictions of vertical heat and salt fluxes in the entrainment zone at the base of the mixed layer are very similar to estimates based on microstructure data.

Full access
H. W. Wijesekera, E. Jarosz, W. J. Teague, D. W. Wang, D. B. Fribance, J. N. Moum, and S. J. Warner

Abstract

Pressure differences across topography generate a form drag that opposes the flow in the water column, and viscous and pressure forces acting on roughness elements of the topographic surface generate a frictional drag on the bottom. Form drag and bottom roughness lengths were estimated over the East Flower Garden Bank (EFGB) in the Gulf of Mexico by combining an array of bottom pressure measurements and profiles of velocity and turbulent kinetic dissipation rates. The EFGB is a coral bank about 6 km wide and 10 km long located at the shelf edge that rises from 100-m water depth to about 18 m below the sea surface. The average frictional drag coefficient over the entire bank was estimated as 0.006 using roughness lengths that ranged from 0.001 cm for relatively smooth portions of the bank to 1–10 cm for very rough portions over the corals. The measured form drag over the bank showed multiple time-scale variability. Diurnal tides and low-frequency motions with periods ranging from 4 to 17 days generated form drags of about 2000 N m−1 with average drag coefficients ranging between 0.03 and 0.22, which are a factor of 5–35 times larger than the average frictional drag coefficient. Both linear wave and quadratic drag laws have similarities with the observed form drag. The form drag is an important flow retardation mechanism even in the presence of the large frictional drag associated with coral reefs and requires parameterization.

Full access
H. W. Wijesekera, D. W. Wang, E. Jarosz, W. J. Teague, W. S. Pegau, and J. N. Moum

Abstract

Momentum transport by energy-containing turbulent eddies in the oceanic mixed layer were investigated during high-wind events in the northern Gulf of Alaska off Kayak Island. Sixteen high-wind events with magnitudes ranging from 7 to 22 m s−1 were examined. Winds from the southeast prevailed from one to several days with significant wave heights of 5–9 m and turbulent Langmuir numbers of about 0.2–0.4. Surface buoyancy forcing was much weaker than the wind stress forcing. The water column was well mixed to the bottom depth of about 73 m. Spectral analyses indicate that a major part of the turbulent momentum flux was concentrated on 10–30-min time scales. The ratio of horizontal scale to mixed layer depth was from 2 to 8. Turbulent shear stresses in the mixed layer were horizontally asymmetric. The downwind turbulent stress at 10–20 m below the surface was approximately 40% of the averaged wind stress and was reduced to 5%–10% of the wind stress near the bottom. Turbulent kinetic energy in the crosswind direction was 30% larger than in the downwind direction and an order of magnitude larger than the vertical component. The averaged eddy viscosity between 10- and 30-m depth was ~0.1 m2 s−1, decreased with depth rapidly below 50 m, and was ~5 × 10−3 m2 s−1 at 5 m above the bottom. The divergence of turbulent shear stress accelerated the flow during the early stages of wind events before Coriolis and pressure gradient forces became important.

Full access
H. W. Wijesekera, D. W. Wang, W. J. Teague, E. Jarosz, W. E. Rogers, D. B. Fribance, and J. N. Moum

Abstract

Several acoustic Doppler current profilers and vertical strings of temperature, conductivity, and pressure sensors, deployed on and around the East Flower Garden Bank (EFGB), were used to examine surface wave effects on high-frequency flows over the bank and to quantify spatial and temporal characteristic of these high-frequency flows. The EFGB, about 5-km wide and 10-km long, is located about 180-km southeast of Galveston, Texas, and consists of steep slopes on southern and eastern sides that rise from water depths over 100 m to within 20 m of the surface. Three-dimensional flows with frequencies ranging from 0.2 to 2 cycles per hour (cph) were observed in the mixed layer when wind speed and Stokes drift at the surface were large. These motions were stronger over the bank than outside the perimeter. The squared vertical velocity w 2 was strongest near the surface and decayed exponentially with depth, and the e-folding length of w 2 was 2 times larger than that of Stokes drift. The 2-h-averaged w 2 in the mixed layer, scaled by the squared friction velocity, was largest when the turbulent Langmuir number was less than unity and the mixed layer was shallow. It is suggested that Langmuir circulation is responsible for the generation of vertical flows in the mixed layer, and that the increase in kinetic energy is due to an enhancement of Stokes drift by wave focusing. The lack of agreement with open-ocean Langmuir scaling arguments is likely due to the enhanced kinetic energy by wave focusing.

Full access
Sally J. Warner, Ryan M. Holmes, Elizabeth H. M. Hawkins, Martín S. Hoecker-Martínez, Anna C. Savage, and James N. Moum

Abstract

Two extremely sharp fronts with changes in sea surface temperature >0.4°C over lateral distances of ~1 m were observed in the equatorial Pacific at 0°, 140°W and at 0.75°N, 110°W. In both cases, layers of relatively warm and fresh water extending to ~30-m depth propagated to the southwest as gravity currents. Turbulent kinetic energy dissipation rates averaging 4.5 × 10−6 W kg−1 were measured with a microstructure profiler within the warm layer behind the leading edge of the fronts—1000 times greater than dissipation in the ambient water ahead of the fronts. From satellite images, these fronts were observed to propagate ahead of the trailing edge of a tropical instability wave (TIW) cold cusp. Results from an ocean model with 6-km grid resolution suggest that TIW fronts may release gravity currents through frontogenesis and loss of balance as the fronts approach the equator and the Coriolis parameter weakens. Sharp frontal features appear to be ubiquitous in the eastern tropical Pacific, have an influence on the distribution of biogeochemical tracers and organisms, and play a role in transferring energy out of the TIW field toward smaller scales and dissipation.

Full access
James N. Moum, Simon P. de Szoeke, William D. Smyth, James B. Edson, H. Langley DeWitt, Aurélie J. Moulin, Elizabeth J. Thompson, Christopher J. Zappa, Steven A. Rutledge, Richard H. Johnson, and Christopher W. Fairall

The life cycles of three Madden–Julian oscillation (MJO) events were observed over the Indian Ocean as part of the Dynamics of the MJO (DYNAMO) experiment. During November 2011 near 0°, 80°E, the site of the research vessel Roger Revelle, the authors observed intense multiscale interactions within an MJO convective envelope, including exchanges between synoptic, meso, convective, and turbulence scales in both atmosphere and ocean and complicated by a developing tropical cyclone. Embedded within the MJO event, two bursts of sustained westerly wind (>10 m s−1; 0–8-km height) and enhanced precipitation passed over the ship, each propagating eastward as convectively coupled Kelvin waves at an average speed of 8.6 m s−1. The ocean response was rapid, energetic, and complex. The Yoshida–Wyrtki jet at the equator accelerated from less than 0.5 m s−1 to more than 1.5 m s−1 in 2 days. This doubled the eastward transport along the ocean's equatorial waveguide. Oceanic (subsurface) turbulent heat fluxes were comparable to atmospheric surface fluxes, thus playing a comparable role in cooling the sea surface. The sustained eastward surface jet continued to energize shear-driven entrainment at its base (near 100-m depth) after the MJO wind bursts subsided, thereby further modifying sea surface temperature for a period of several weeks after the storms had passed.

Full access
Nirnimesh Kumar, James A. Lerczak, Tongtong Xu, Amy F. Waterhouse, Jim Thomson, Eric J. Terrill, Christy Swann, Sutara H. Suanda, Matthew S. Spydell, Pieter B. Smit, Alexandra Simpson, Roland Romeiser, Stephen D. Pierce, Tony de Paolo, André Palóczy, Annika O’Dea, Lisa Nyman, James N. Moum, Melissa Moulton, Andrew M. Moore, Arthur J. Miller, Ryan S. Mieras, Sophia T. Merrifield, Kendall Melville, Jacqueline M. McSweeney, Jamie MacMahan, Jennifer A. MacKinnon, Björn Lund, Emanuele Di Lorenzo, Luc Lenain, Michael Kovatch, Tim T. Janssen, Sean R. Haney, Merrick C. Haller, Kevin Haas, Derek J. Grimes, Hans C. Graber, Matt K. Gough, David A. Fertitta, Falk Feddersen, Christopher A. Edwards, William Crawford, John Colosi, C. Chris Chickadel, Sean Celona, Joseph Calantoni, Edward F. Braithwaite III, Johannes Becherer, John A. Barth, and Seongho Ahn

Abstract

The inner shelf, the transition zone between the surfzone and the midshelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from September–October 2017, conducted from the midshelf, through the inner shelf, and into the surfzone near Point Sal, California. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves, and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the midshelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.

Full access